Только лучшие рефераты рунета    
 
 

Партнеры:



 
 






МИНИСТЕРСТВО ОБЩЕГО И

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ФИЛОСОФИИ

 

 

РЕФЕРАТ

ПО ДИСЦИПЛИНЕ “ФИЛОСОФИЯ”

НА ТЕМУ: “ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ”

 

 

Факультет:         ПМиИ

Группа:               ПММ-41

Студент:             Слепынин А. Ю.

Преподаватель:Буторин В. Я.

Новосибирск 1999г.

Содержание

Введение                                                                                                                             3

Взгляды на термин "знание"                                                                                             5

            Аспект представления знаний                                                                              5

            Знание как основа                                                                                                  6

Рефлексия как одна из составляющих интеллектуальной деятельности                      9

            Понятие рефлексии                                                                                                9

            Неотъемлимость рефлексии                                                                                  12

Математическо-технические аспекты реализации систем

искусственного интеллекта                                                                                               13

            Природа обработки естественного языка                                                            15

            Основная проблема обработки естественного языка                                         16

            Распознавание речи                                                                                               17

Практическая реализация                                                                                                  18

            Семантические сети                                                                                               20

Искусственный интеллект и теоретические проблемы психологии                            21

Сознаниие и разум                                                                                                             23

            Что такое сознание?                                                                                               23

            Сознание и выживание                                                                                         24

            Есть ли разум?                                                                                                        25

            Чем же отличается сознание от самообучения?                                                  26

            Человек вооружен                                                                                                  27

            Осознавание себя                                                                                                   27

            Сознание - это не материальный предмет                                                          28

            Разумны только люди?                                                                                          30

Заключение                                                                                                                         31

Словарь терминов                                                                                                             33

Использованная литература                                                                                              35

Введение

         Современные философы и исследователи науки часто рассматривают междисциплинарные науки как одно из выдающихся достижений заново открытых в 20 веке. Искусственный интеллект и искусственная жизнь представляют прекрасный пример такой интеграции многих научных областей. Конечно, междисциплинарность тоже имеет свою цену. Химики, биологи, специалисты в области вычислительных наук и многие другие изучают различные аспекты живых систем, пользуясь при этом сходными методами. Основными методами изучения искусственной жизни являются: синтез искусственных систем с аналогичным живым системам поведением, изучение динамики развития процесса, а не конечного результата, конструирование систем демонстрирующих феномен созидания. То что объединяет исследователей в области искусственной жизни (ИЖ) - это методы, в отличие от их целей. Конечно, существует общий интерес к жизни как к феномену для изучения. К сожалению, жизнь слишком сложна, чтобы можно было наметить общие направления в исследованиях. Доказательствам последнего утверждения может служить тот факт, что некоторые заинтересованы в исследовании “систем, демонстрирующих феномены живых систем”, другие изучают природу химического репродуцирования или пытаются решить философские проблемы самосознания. В то же время совершенно другой вид исследователей, относящихся к области роботики, пытаются создавать физические системы, демонстрирующие некоторое поведенческое сходство с животными. По современным научным данным человеческий мозг содержит около 240 основных “вычислительных” узлов нейронов, которых соединяют около 250 связей синапсов. Современные вычислительные системы стремительно приближаются по своим вычислительным возможностям к мозгу. Искусственные нейронные сети контролируют сложнейшие системы управления и слежения, проявляют способности в области распознавания изображения вплоть до возможности создания интеллектуальных автопилотов. Уже активно занимается искусственными системами область, считавшаяся прерогативой человека - компьютеры стали лучше людей играть в шахматы. В таких условиях приобретает особую значимость рассмотрение основных философских вопросов, связанных с искусственным интеллектом и искусственной жизнью. При этом, очевидно, возможно взаимовлияние искусственного интеллекта и искусственной жизни на философские проблемы мышления и жизни вообще.

 

 

 

 

 

 

Взгляды на термин “знание”

            В последние годы термин “знание” все чаще употребляется в информатике. Он встречается в таких словосочетаниях, как “база знаний”, “банк знаний”, язык представления знаний”, “системы представления знаний” и других. Специалисты подчеркивают, что совершенствование так называемых интеллектуальных систем (информационно-поисковых систем высокого уровня, диалоговых систем, базирующихся на естественных языках, интерактивных человеко-машинных систем, используемых в управлении, проектировании, научных исследованиях) вот многом определяется тем, насколько успешно будут решаться задачи представления знаний.

Аспект представления знаний

            Неудивительно, что перед теми, кто занимается проблемой представлении знаний, встает вопрос о том, что такое знание, какова его природа и основные характеристики. В связи с этим предпринимаются, например, попытки дать такое определение знания, из которого можно было бы исходить в решении задач представления знаний в компьютерных системах. Подчеркивается, что для разработки средств и методов представления знаний необходимо использовать результаты когнитивной психологии - науки, выявляющей структуры, в виде которых человек хранит информацию об окружающем его мире. Высказывается мнение, что язык и представление знаний в системах искусственного интеллекта должны рассматриваться в рамках особого научного направления - когитологии. Предметом когитологии должно стать знание как самостоятельный аспект реальности.

            Представлению данных присущ пассивный аспект: книга, таблица, заполненная информацией память. В теории искусственного интеллекта особо подчеркивается активный аспект представления: знать должно стать активной операцией, позволяющей не только запоминать, но и извлекать воспринятые (приобретенные, усвоенные) знания для рассуждений на их основе. Следовательно, истоки представления знаний - в науке о познании  (эпистемологии или гносеологии), а его конечная цель - программные средства информатики.

            Во многих случаях подлежащие представлению знания относятся к довольно ограниченной области, для характеристики которой говорят об “области рассуждений” или “области экспертизы”. Численная формализация таких описаний в общем малоэффективна. Напротив, использование символического языка, такого, как язык математической логики, позволяет формулировать описания в форме, одновременно близкой и к обычному языку, и к языку программирования. Впрочем, математическая логика позволяет рассуждать, базируясь на приобретенных знаниях: логические выводы действительно являются активными операциями получения новых знаний из уже усвоенных.

Знание как основа

            Вместе с тем вопрос, что такое знание, каковы его основные свойства и способы получения, - это исконно философский вопрос. Закономерно поэтому стремление дать философское осмысление вопросов компьютерного представления знаний, выявляя прежде всего их гносеологические и философско-логические аспекты.

            Принципиальная мировоззренческая установка состоит в рассмотрении ЭВМ как предмета-посредника в человеческой познавательной деятельности. Компьютерная система, подобно другим предметам-посредникам (орудиям труда и предметам быта, инструментам, приборам, знаково-символическим системам, научным текстам и т. д.), играя инструментальную роль в познании, является средством объективизации накопленного знания, воплощением определенного социально-исторического опыта практической и познавательной деятельности. Ее важнейшая теоретико-познавательная роль и обусловлена тем, что выделение человеком во вновь познаваемых объектов черт, которые оказываются существенными с точки зрения общественной практики, становится возможным именно при помощи предметов-посредников. “ЭВМ, - подчеркивает акад. Г. С. Поспелов, - представляет собой инструмент для интеллектуальной деятельности людей, а научное направление “искусственный интеллект” придает этому инструменту новые качества и обеспечивает новый, более перспективный стиль его использования. Спор между сторонниками и противниками искусственного интеллекта оказывается в связи с этим совершенно беспредметным.

            Проблема представления знаний возникла как одна из проблем искусственного интеллекта. Она связана с переходом исследований в этой области в некоторую новую фазу. Речь идет о создании практически полезных систем (прежде всего так называемых экспертных систем), применяемых в медицине, геологии, химии. Создание такого рода систем требует интенсивных усилий по формализации знания, накопленного в соответствующей науке.

            С термином “представление знаний” связывается определенный этап в развитии математического обеспечения ЭВМ. Если на первом этапе доминировали программы, а данные играли вспомогательную роль своеобразной “пищи” для “голодных” программ, то на последующих этапах роль данных неуклонно возрастала. Их структура усложнялась: от машинного слова, рамещенного в одной ячейке памяти ЭВМ, происходил переход к векторам, массивам, файлам, спискам. Венцом этого развития стали абстрактные типы данных, обеспечивающие возможность создания такой структуры данных, которая наиболее удобна при решении задачи. Последовательное развитие структур данных привело к их качественному изменению и к переходу от представления данных к представлению знаний. Уровень представления знаний отличается от уровня представления данных не только более сложной структурой, но и существенными особенностями: интерпретируемость, наличие классифицируемых связей (например, связь между знаниями, относящихся к элементу множества, и знаниями об этом множестве), которые позволяют хранить информацию, одинаковую для всех элементов множества, записанную одноактно при описании самого множества, наличие ситуативных отношений (одновременности, нахождения в одной точке пространства и т. п., эти отношения определяют ситуативную совместимость тех или иных знаний, хранимых в памяти). Кроме того, для уровня знаний характерны такие признаки, как наличие специальных процедур обобщения, пополнения имеющихся в системе знаний и ряда других процедур.

            Для философского анализа рассматриваемой проблематики важен вопрос о том, считать ли термин “знание” в выражении “представление знаний” явлением профессионального жаргона или действительно переход от представления данных к представлению знаний имеет существенные гносеологические характеристики и какие именно? Особенности ЭВМ как предмета-посредника в познании во многом определяются тем, что ЭВМ относится к такому типу предметов-посредников, как модели. Термин “модель” употребляется в обыденном языке и в языке науки в различных значениях. Пусть под моделью понимается некоторая система (материальная или концептуальная), в той или иной форме отображающая некоторые свойства и отношения другой системы, называемой оригиналом, в точно указанном смысле замещающая ее и дающая новую информацию об оригинале. При анализе гносеологических аспектов моделирования ЭВМ рассматривались в философско-методологической литературе прежде всего как материальные модели, создаваемые на основе действия определенных физических закономерностей и функционирующие благодаря протеканию в них вполне определенных физических процессов. Моделирование на ЭВМ понималось как техническая реализация определенной формы знакового моделирования. Однако, рассматривая ЭВМ в гносеологическом плане как предмет посредник в познании, имеет смысл не фиксировать внимание прежде всего на “железной части” (hardware) компьютера, а рассматривать всю компьютерную систему как сложную систему взаимосвязанных и до некоторых пределов самостоятельных моделей - как материальных, так и знаковых, т. е. идеальных. Такой подход не только соответствует рассмотрению компьютерных систем в современной информатике, но является и гносеологически оправданным. Многие важные философские аспекты проблем, возникающих в связи с компьютеризацией различных сфер человеческой деятельности, требуют для своего исследования обращения прежде всего к знаковым составляющим компьютерных систем. Это верно и в отношении философских аспектов проблем представления знаний.

            В последние годы все чаще стал употребляться термин “компьютерное моделировнаие”. Очевидно, имеет смысл обозначать им построение любого из состовляющих компьютерной системы - будь то знаковая модель или материальная.

            Что изменяется в компьютерном моделировании с переходом от представления данных к представлению знаний? Каков гносеологический смысл этих изменений? А. Ньюэлл, отмечая, что проблематика представления знаний имеет интересные точки соприкосновения с философией, ибо природа разума и природа знания всегда являлись одним из центральных филосовских вопросов, пишет: “Однако, интерес философии к знанию всегда концентрировался на проблеме достоверности... Это нашло отражение в том различении между знанием и верой, которое проводится в философии. Искусственный интеллект, рассматривая все знание как содержащие ошибки, называет все-таки свои системы системами знаний. С точки зрения философии искусственный интеллект имеет дело только с системами веры. ...Таким образом, учение о знании, если оно разделит с искусственным интеллектом безразличие к проблеме абсолютной достоверности, окажется оставляющим без внимания центральные филосовские вопросы”. Различия в подходах к знанию, имеющиеся в философии и в искусственном интеллекте, не дают оснований для абсолютного противопоставления этих подходов и для отстранения от проблематики представления знаний той философии, которая не желает “оставлять без внимания центральные филосовские вопросы”.

            Понятие “знание” можно и должно считать одним из ключевых как с точки зрения теории искусственного интеллекта, так и гносеологии. Именно философия пытается дать полную картину, полное объяснение природы того или иного понятия. В этом смысле она несомненно должна идти на первом месте, т. к. любая наука должна базироваться на строгих принципах. В этом смысле философскому познанию отводится ключевая роль в разработке и исследованию концепции знания, как объекта для моделирования. Таким образом, знание в гносеологическом смысле является основой.

            С введением термина “знание” появляется свойство “осознавать”, т. е. “понимать” свои интеллектуальные возможности. В свою очередь это означает не что иное, как рефлексию.

Рефлексия

как одна из составляющих интеллектуальной деятельности

Понятие рефлексии

            Исследования в области искусственного интеллекта возникли под влиянием идей кибернетики - прежде всего идеи общности процессов управления и передачи информации в живых организмах, обществе и компьютерах. Примечательно, что снятие идеологических запретов на кибернетику в период “оттепели” повлекло за собой бурное развитие исследований по кибернетике, и та ее область, которая впоследствии была осознана как проблематика создания систем искусственного интеллекта, сформировалась особенно быстро.

            Интересно отметить, что реабилитация кибернетики и, в частности, проблемы искусственного интеллекта (или как тогда говорили, создание “мыслящих маши”) отнюдь не была сопряжена с общим процессом деидеологизации науки. “Оправдание” кибернетики произошло стараниями нескольких крупных ученых, искренне доказывавшими материалистический характер кибернетического воззрения на мир. Вслед за учеными эту задачу взяли на себя профессиональные философы.

            Философская приемлемость проблематики искусственного интеллекта в ее традиционном виде была обусловлена лежащим в ее основе представлением о том, что “порядок и связь идей те же, что порядок и связь вещей”. Тем самым создать в компьютере структуру, воспроизводящую “мир идей”, означало означало попросту создать структуру изоморфную структуре вещественного мира, т. е. построить “электронную модель мира”. Эта модель интерпретировалась как компьютерная модель человеческих знаний о мире. Процесс человеческого мышления интерпретировался в компьютере как машинный поиск таких трансформаций модели, которые должны были перевести компьютерную модель в некое финальное состояние (например, матовую позицию в шахматах).

            Для этого система искусственного интеллекта нуждалась в знаниях о том, как осуществлять трансформации состояний модели, приводящие к заранее заданной цели - состоянию с определенными свойствами. В первое время было распространено убеждение в принципиальной способности компьютера к самостоятельному исследованию хранящейся в нем модели, т. е. к самообучению стратегии достижения поставленной цели.

            Данная гипотетическая способность интерпретировалась как возможность машинного творчества, как основа создания будущих “мыслящих машин”. И, хотя в реально разрабатывавшихся системах достижение цели осуществлялось на основе человеческого опыта с помощью алгоритмов, основанных на теоретическом анализе создаваемых моделей и результатов проводимых на них экспериментов, идеи построения самообучаемых систем многим казались наиболее перспективными. Лишь к 80-му году была осознана значимость проблемы использования в интеллектуальных системах человеческих знаний о действительности, повлекшая серьезную разработку баз знаний и методов извлечения личных знаний экспертов.

            С развитием изучения данного направления возникла идея рефлексивного управления. До этого момента в кибернетике управление рассматривалось как передача объекту сигналов, непосредственно воздействующих на его поведение, а эффективность управления достигалась с помощью обратной связи - получения информации о реакциях управляемого объекта. Рефлексивное же управление - есть передача информации, воздействующей на имеющийся у объекта образ мира. Тем самым обратная связь излишняя - состояние субъекта известно передающему информацию.

            Интересными оказались компьютерные модели, в которых успех достигался за счет включения рефлексии о противодействующих намерениях партнеров.

            Философская традиция называет рефлексией мысль о мысли, т. е. ситуацию, когда предметом мысли оказывается не вещь, а факт мышления. Св. Фома Аквинский определял рефлексию как “мысль, догоняющую мысль”.

            Сам факт рефлексии означает, что деятельность человеческого сознания отнюдь не ограничивается созданием моделей, воспроизводящих (“отражающих”) внешнюю действительность. Рефлексия - мнение субъекта об имеющемся у него образе действительности, т. е. критический образ этого образа, подразумевающий оценку создаваемых в воображении моделей. Классическая парадигма искусственного интеллекта игнорирует данное обстоятельство и поэтому не интересуется рефлексией. Вероятно, что такое игнорирование связано с бытующим взглядом на рефлексию как на критическое сомнение, которое мешает последовательному проведению эффективных действий. Классическая парадигма искусственного интеллекта предполагала наличие жесткого целеполагания, т. е. ясной и не подлежащей сомнению цели, достижение которой означает решение проблемы независимо от используемых средств (если последнее обстоятельство не противоречит основным принципам построения самой интеллектуальной системы). В системе с развитой рефлексией цель также может оказаться предметом критической рефлексии. Человек, способный к глубокой рефлексии, не может быть абсолютно целеустремленным, ибо он способен усомниться в безоговорочной ценности поставленной перед ним цели.

            Традиционные системы искусственного интеллекта основаны на идеологии целеориентированного поведения типа шахматной игры, где цель обоих партнеров состоит в том, чтобы поставить мат другому ценой любых жертв. Не случайно именно шахматные программы оказались столь важными для отработки методов искусственного интеллекта.

Неотъемлемость рефлексии

            Стоит ли считать рефлексию неотъемлемой частью систем искусственного интеллекта? Иначе  говоря - должен ли “мыслящий” аппарат понимать, что он мыслит, и контролировать этот процесс?

            Ответом с технической точки зрения может служить следующее. Как и любая компьютерная программа, наделенная средствами самодиагностики и самоисправления (а такие средства уже становятся стандартном), т. е. средствами повышения надежности, системы искусственного интеллекта должны контролировать происходящие процессы - как внешние, так и внутренние. Однако, может показаться, что в этом смысле будет достаточным просто развитая структура обратных связей. Сразу надо оговориться, что под обратной связью следует понимать только ответную реакцию (или получение информации о ней) после какого-то конкретного действия системы. Обратная связь лишь предоставляет данные, информацию, но ни в коей мере не интерпретирует их. Норбертом Винером в книге “Кибернетика, или управление и связь в животном и машине” были приведены примеры нарушений нервной системы людей и их последствия. Так люди с нарушением системы ориентации собственных конечностей в пространстве (не чувствующие своих рук и ног, случай, когда конечности “немеют”) должны были визуально контролировать свои действия. Это было типичное нарушение обратной связи. Рефлексия же подразумевает анализ полученной картины. Математика - наука абстрактная. Любую предметную область, с которой работает математик, он описывает с помощью моделей, структура и сложность которых зависит от конкретных поставленных задач. Анализ функционирования собственной модели или модели “всей окружающей действительности” (в рамках поставленной задачи), контроль над ее состоянием, прогнозирование состояния - есть ни что иное, как реализация рефлексии. Рефлексия - есть некий метауровень. С применением языков высокого уровня, таких как язык Пролог, позволяющий формулировать цели и строить логические выводы достижимости этих целей, задача реализации рефлексии уже может быть частично решена. С их помощью можно построить некую метаструктуру, надстройку, некий метауровень, позволяющий оценивать поведение предыдущего. Однако, при рассмотрении термина “глубокая рефлексия” или “многоуровневая рефлексия” встает проблема построения моделей самой системой. Здесь на помощь могут приходят абстрактные типы данных. Они позволяют оперировать структурами данных любой конечной сложности. Таким образом можно считать, что системы искусственного интеллекта могут содержать модель рефлексии (математика оперирует только моделями).

            Это может быть ответом на вопрос “Можно ли машину заставить понимать, что она понимает?”, но не на вопрос о обязательном включении рефлексии. Попробуем ответить от противного: а можно ли отвергнуть рефлексию, можно ли считать интеллектуальную систему полноценной без умения оценивать, “понимать” свои действия? Думаю, что нельзя. Более того, рефлексию следует считать одним из главных инструментов построения поведения систем. Как ни забавно это звучит, но говоря самоконтроля и самопонимания, можно говрить о некоторой этике поведения системы.

Математическо-технические

аспекты реализации систем искусственного интеллекта

            С конца 40-х годов ученые все большего  числа  университетских  и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров,  действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума.

            Терпеливо продвигаясь вперед в своем нелегком труде, исследователи,  работающие в области искусственного интеллекта (ИИ),  обнаружили, что вступили в схватку с весьма запутанными проблемами, далеко выходящими за пределы традиционной информатики.  Оказалось, что прежде всего необходимо  понять механизмы процесса обучения,  природу языка и чувственного восприятия.  Выяснилось,  что для создания машин, имитирующих работу человеческого мозга, требуется разобраться в том, как действуют миллиарды его взаимосвязанных нейронов.  И тогда многие  исследователи пришли  к  выводу,  что пожалуй самая трудная проблема,  стоящая перед современной наукой - познание процессов функционирования человеческого разума,  а не просто имитация его работы. Что непосредственно затрагивало фундаментальные теоретические проблемы психологической  науки.  В самом  деле,  ученым  трудно даже прийти к единой точке зрения относительно самого предмета их исследований  -  интеллекта.  Здесь, как в притче о слепцах, пытавшихся описывать слона, пытается придерживаться своего заветного определения.

            Некоторые считают,  что интеллект - умение решать сложные задачи; другие рассматривают его как способность к обучению,  обобщению и аналогиям;  третьи - как возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого. Тем не менее многие исследователи ИИ склонны принять тест машинного интеллекта,  предложенный в начале 50-х годов выдающимся английским математиком и специалистом по вычислительной  технике Аланом Тьюрингом.  Компьютер можно считать разумным,- утверждал Тьюринг,- если он способен  заставить нас поверить, что мы имеем дело не с машиной, а с человеком.

Обеспечение взаимодействия с ЭВМ на естественном языке (ЕЯ) является важнейшей задачей исследований по искусственному интеллекту (ИИ). Базы данных, пакеты прикладных программ и экспертные системы, основанные на ИИ, требуют оснащения их гибким интерфейсом для многочисленных пользователей, не желающих общаться с компьютером на искусственном языке. В то время как многие фундаментальные проблемы в области обработки ЕЯ (Natural Language Processing, NLP) еще не решены, прикладные системы могут оснащаться интерфейсом, понимающем ЕЯ при определенных ограничениях.

Существуют два вида и, следовательно, две концепции обработки естественного языка:

·  для отдельных предложений;

·  для ведения интерактивного диалога.

Природа обработки естественного языка

Обработка естественного языка - это формулирование и исследование компьютерно-эффективных механизмов для обеспечения коммуникации с ЭВМ на ЕЯ. Объектами исследований являются:

·  собственно естественные языки;

·  использование ЕЯ как в коммуникации между людьми, так и в коммуникации человека с ЭВМ.

Задача исследований - создание компьютерно-эффективных моделей коммуникации на ЕЯ. Именно такая постановка задачи отличает NLP от задач традиционной лингвистики и других дисциплин, изучающих ЕЯ, и позволяет отнести ее к области ИИ. Проблемой NLPзанимаются две дисциплины: лингвистика и когнитивная психология.

Традиционно лингвисты занимались созданием формальных, общих, структурных моделей ЕЯ, и поэтому отдавали предпочтение тем из них, которые позволяли извлекать как можно больше языковых закономерностей и делать обобщения. Практически никакого внимания не уделялось вопросу о пригодности моделей с точки зрения компьютерной эффективности их применения. Таким образом, оказалось, что лингвистические модели, характеризуя собственно язык, не рассматривали механизмы его порождения и распознавания. Хорошим примером тому служит порождающая грамматика Хомского, которая оказалась абсолютно непригодной на практике в качестве основы для компьютерного распознавания ЕЯ.

Задачей же когнитивной психологии является моделирование не структуры языка, а его использования. Специалисты в этой области также не придавали большого значения вопросу о компьютерной эффективности.

Различаются общая и прикладная NLP. Задачей общей NLP является разработка моделей использования языка человеком, являющихся при этом компьютерно-эффективными. Основой для этого является общее понимание текстов, как это подразумевается в работах Чарняка, Шенка, Карбонелла и др. Несомненно, общая NLP требует огромных знаний о реальном мире, и большая часть работ сосредоточена на представлении таких знаний и их применении при распознавании поступающего сообщения на ЕЯ. На сегодняшний день ИИ еще не достиг того уровня развития, когда для решения подобных задач в большом объеме использовались бы знания о реальном мире, и существующие системы можно называть лишь экспериментальными, поскольку они работают с ограниченным количеством тщательно отобранных шаблонов на ЕЯ.

Прикладная NLP занимается обычно не моделированием, а непосредственно возможностью коммуникации человека с ЭВМ на ЕЯ. В этом случае не так важно, как введенная фраза будет понята с точки зрения знаний о реальном мире, а важно извлечение информации о том, чем и как ЭВМ может быть полезной пользователю (примером может служить интерфейс экспертных систем). Кроме понимания ЕЯ, в таких системах важно также и распознавание ошибок и их коррекция.

Следующая страница



 
     
 

2021 © Copyright, Abcreferats.ru
E-mail: