Только лучшие рефераты рунета    
 
 

Партнеры:



 
 






Азбука живой материи: белки

Более 4 млрд лет назад на Земле из маленьких неорганических молекул непостижимым образом возникли белки, ставшие строительными блоками живых организмов. Своим бесконечным разнообразием всё живое обязано именно уникальным молекулам белка, и иные формы жизни во Вселенной науке пока неизвестны.

Белки, или протеины (от греч. “протос” — “первый”), — это природные органические соединения, которые обеспечивают все жизненные процессы любого организма. Из белков построены хрусталик глаза и паутина, панцирь черепахи и ядовитые вещества грибов... С помощью белков мы перевариваем пищу и боремся с болезнями. Благодаря особым белкам по ночам светятся светлячки, а в глубинах океана мерцают таинственным светом медузы.

Белковых молекул в живой клетке во много раз больше, чем всех других (кроме воды, разумеется!). Учёные выяснили, что у большинства организмов белки составляют более половины их сухой массы. И разнообразие видов белков очень велико — в одной клетке такого маленького организма, как бактерия Escherichia сой' (см. дополнительный очерк “Объект исследования — прокариоты”), насчитывается около 3 тыс. различных белков.

Впервые белок был выделен (в виде клейковины) в 1728 г. итальянцем Якопо Бартоломео Беккари (1682— 1766) из пшеничной муки. Это событие принято считать рождением химии белка. С тех пор почти за три столетия из природных источников получены тысячи различных белков и исследованы их свойства.

БИОЛОГИЧЕСКИЕ “БУСЫ”

Молекула белка очень длинная. Химики называют такие молекулы полимерными (от греч. “поли” — “много” и “мерос” — “часть”, “доля”). Действительно, длинная молекула полимера состоит из множества маленьких молекул, связанных друг с другом. Так нанизываются на нить бусинки в ожерелье. В полимерах роль нити играют химические связи между бусинками-молекулами.

Секрет белков спрятан в особенностях этих самых бусинок. Большинство полимеров не принимает устойчивой формы в пространстве, уподобляясь тем же бусам, у которых и не может быть пространственной структуры: повесишь их на шею — они примут форму кольца или овала, положишь в коробку — свернутся в клубок неопределённой формы. А теперь представим себе, что некоторые бусинки могут “слипаться” друг с другом. Например, красные притягиваются к жёлтым. Тогда вся цепочка примет определённую форму, обязанную своим существованием “слипа-нию” жёлтых и красных бусинок

Нечто подобное происходит и в белках. Отдельные маленькие молекулы, входящие в состав белка, обладают способностью “слипаться”, так как между ними действуют силы притяжения. В результате у любой белковой цепи есть характерная только для неё пространственная структура. Именно она определяет чудесные свойства белков. Без такой структуры они не могли бы выполнять те функции, которые осуществляют в живой клетке.

При длительном кипячении белков в присутствии сильных кислот или щелочей белковые цепи распадаются на составляющие их молекулы,

называемые аминокислотами. Аминокислоты — это и есть те “бусинки”, из которых состоит белок, и устроены они сравнительно просто.

КАК УСТРОЕНА АМИНОКИСЛОТА

В каждой молекуле аминокислоты есть атом углерода, связанный с четырьмя заместителями. Один из них — атом водорода, второй — карбоксильная группа —СООН. Она легко “отпускает на волю” ион водорода Н + , благодаря чему в названии аминокислот и присутствует слово “кислота”. Третий заместитель — аминогруппа —NH 2 и, наконец, четвёртый заместитель — группа атомов, которую в общем случае обозначают R. У всех аминокислот R-группы разные, и каждая из них играет свою, очень важную роль.

Свойства “бусинок”, отличающие одну аминокислоту от другой, скрыты в R-группах (их ещё называют боковыми цепями). Что же касается группы —СООН, то химики-органики относятся к ней с большим почтением: всем другим атомам углерода в молекуле даются обозначения в зависимости от степени их удалённости от карбоксильной группы. Ближайший к ней атом именуют а -атомом, второй — в -атомом, следующий — у -атомом и т. д. Атом углерода в аминокислотах, который находится ближе всех к карбоксильной группе, т. е. а -атом, связан также с аминогруппой, поэтому природные аминокислоты, входящие в состав белка, называют а -аминокислотами.

В природе встречаются также аминокислоты, в которых NH^-группа связана с более отдалёнными от карбоксильной группы атомами углерода. Однако для построения белков природа выбрала именно а -аминокислоты. Это обусловлено прежде всего тем, что только а -аминокислоты, соединённые в длинные цепи, способны обеспечить достаточную прочность и устойчивость структуры больших белковых молекул.

Число а -аминокислот, различающихся R-группой, велико. Но чаще других в белках встречается всего 20 разных аминокислот. Их можно рассматривать как алфавит “языка” белковой молекулы. Химики называют эти главные аминокислоты стандартными, основными или нормальными. Условно основные аминокислоты делят на четыре класса.

В первый входят аминокислоты с неполярными боковыми цепями. Во второй — аминокислоты, содержащие полярную группу. Следующие два составляют аминокислоты с боковыми цепями, которые могут заряжаться положительно (они объединяются в третий класс) или отрицательно (четвёртый). Например, диссоциация карбоксильной группы даёт анион — СОО - , а протонирование атома азота — катион, например —NH 3 + . Боковые цепи аспарагиновой и глута-миновой кислот имеют ещё по одной карбоксильной группе —СООН, которая при значениях рН, характерных для живой клетки (рН = 7), расстаётся с ионом водорода (Н + ) и приобретает отрицательный заряд. Боковые цепи аминокислот лизина, аргинина и гистидина заряжены положительно, поскольку у них есть атомы азота, которые, наоборот, могут ион водорода присоединять.

Каждая а -аминокислота (кроме глицина) в зависимости от взаимного расположения четырёх заместителей может существовать в двух формах. Они отличаются друг от друга, как предмет от своего зеркального отражения или как правая рука от левой. Такие соединения получили название хоральных (от грен. “хир” — “рука”). Хиральные молекулы открыл в 1848 г. великий французский учёный Луи Пастер. Два типа оптических изомеров органических молекул получили названия Д-форма (от лат. dexter — “правый”) и Z-форма (от лат. laevus — “левый”). Кстати, одно из названий других хиральных молекул — глюкозы и фруктозы — декстроза и левулоза. Примечательно, что в состав белков входят только Z-аминокислоты, и вся белковая жизнь на Земле — “левая”.

Для нормальной жизнедеятельности организм нуждается в полном наборе из 20 основных a-Z-аминокислот. Но одни из них могут быть синтезированы в клетках самого организма, а другие — должны поступать в готовом виде из пищевых продуктов. В первом случае аминокислоты называют заменимыми, а во втором — незаменимыми. Набор последних для разных организмов различен. Например, для белой крысы незаменимыми являются 10 аминокислот, а для молочнокислых бактерий — 16. Растения могут самостоятельно синтезировать самые разнообразные аминокислоты, создавать такие, которые не встречаются в белках.

Для удобства 20 главных аминокислот обозначают символами, используя одну или первые три буквы русского или английского названия аминокислоты, например аланин — Ала или А, глицин — Гли или G.

ЧТО ТАКОЕ ПЕПТИД

Полимерная молекула белка образуется при соединении в длинную цепочку бусинок-аминокислот. Они нанизываются на нить химических связей благодаря имеющимся у всех аминокислот амино- и карбоксильной группам, присоединённым к а-атому углерода.

Образующиеся в результате такой реакции соединения называются пеп-тидами; (—СО—NH—группировка в них — это пептидная группа, а связь между атомами углерода и азота — пептидная связь (её ещё называют амидной). Соединяя аминокислоты посредством пептидных связей, можно получить пептиды, состоящие из остатков очень многих аминокислот. Такие соединения получили название полипептиды. Полипептидное строение белковой молекулы доказал в 1902 г. немецкий химик Эмиль Герман Фишер.

На концах аминокислотной цепочки находятся свободные амино-и карбоксильная группы; эти концы цепочки называют N- и С-концами. Аминокислотные остатки в полипеп-тидной цепочке принято нумеровать с N-конца.

Общее число аминокислотных остатков в белковой молекуле изменяется в очень широких пределах. Так, человеческий инсулин состоит из 51 аминокислотного остатка, а лизо-цим молока кормящей матери — из 130. В гемоглобине человека 4 аминокислотные цепочки, каждая из которых построена из примерно 140 аминокислот. Существуют белки, имеющие почти 3 тыс. аминокислотных остатков в единой цепи.

Молекулярные массы белков лежат в диапазоне примерно от 11 тыс. для малых белков, состоящих из 100 аминокислотных остатков, до 1 млн и более для белков с очень длинными полипептидными цепями или для белков, состоящих из нескольких по-липептидных цепей.

Возникает вопрос: как же всё огромное многообразие белков с различными функциями и свойствами может быть создано всего из 20 молекул? А разгадка этого секрета природы проста — каждый белок имеет свой неповторимый аминокислотный состав и уникальный порядок соединения аминокислот, называемый первичной структурой белка.

СПИРАЛИ И СЛОИ

В начале 50-х гг. XX в. американские химики Лайнус Карл Полинг (1901— 1994), награждённый Нобелевской премией за исследования природы химической связи, и Роберт Кори (1897—1971) предположили, что некоторые участки аминокислотной цепочки в белках закручены в спираль. Благодаря совершенствованию экспериментальных методов (структуру белков изучают с помощью рентгеновских лучей) через несколько лет эта гениальная догадка подтвердилась.

Действительно, полипептидные цепи очень часто образуют спираль, закрученную в правую сторону. Это первый, самый низкий уровень пространственной организации белковых цепочек Здесь-то и начинают играть роль слабые взаимодействия “бусинок”-аминокислот: группа С=0 и группа N—H из разных пептидных связей могут образовывать между собой водородную связь. Оказалось, что в открытой Полингом и Кори спирали такая связь образована между группой С=0 каждой г-й аминокислоты и группой N—H (i + 4)-й аминокислоты, т. е. между собой связаны аминокислотные остатки, отстоящие друг от друга на четыре “бусинки”. Эти водородные связи и стабилизируют такую спираль в целом. Она получила название a.-спирали.

Позднее выснилось, что а-спираль — не единственный способ укладки аминокислотных цепочек. Помимо спиралей они образуют ещё и слои. Благодаря всё тем же водородным связям между группами С=0 и N—H друг с другом могут “слипаться” сразу несколько разных фрагментов одной полипептидной цепи. В результате получается целый слой — его назвали ^-слоем.

В большинстве белков а-спирали и р-слои перемежаются всевозможными изгибами и фрагментами цепи без какой-либо определённой структуры. Когда имеют дело с пространственной структурой отдельных участков белка, говорят о вторичной структуре белковой молекулы.

БЕЛОК В ПРОСТРАНСТВЕ

Для того чтобы получить полный “портрет” молекулы белка, знания первичной и вторичной структуры недостаточно. Эти сведения ещё не дают представления ни об объёме, ни о форме молекулы, ни тем более о расположении участков цепи по отношению друг к другу. А ведь все спирали и слои каким-то образом размещены в пространстве. Общая пространственная структура поли-пептидной цепи называется третичной структурой белка.

Первые пространственные модели молекул белка — миоглобина и гемоглобина — построили в конце 50-х гг. XX в. английские биохимики Джон Ко-удери Кендрю (родился в 1917 г.) и Макс Фердинанд Перуц (родился в 1914 г.). При этом они использовали данные экспериментов с рентгеновскими лучами. За исследования в области строения белков Кендрю и Перуц в 1962 г. были удостоены Нобелевской премии. А в конце столетия была определена третичная структура уже нескольких тысяч белков.

При образовании третичной структуры белка наконец-то проявляют активность R-группы — боковые цепи аминокислот. Именно благодаря им “слипаются” между собой большинство “бусинок”-аминокислот, придавая цепи определённую форму в пространстве.

В живом организме белки всегда находятся в водной среде. А самое большое число основных аминокислот — восемь — содержат неполярные R-группы. Разумеется, белок стремится надёжно спрятать внутрь своей молекулы неполярные боковые цепи, чтобы ограничить их контакт с водой. Учёные называют это возникновением гидрофобных взаимодействий (см. статью “Мельчайшая единица живого”).

Благодаря гидрофобным взаимодействиям вся полипептидная цепочка принимает определённую форму в пространстве, т. е. образует третичную структуру.

В молекуле белка действуют и другие силы. Часть боковых цепей основных аминокислот заряжена отрицательно, а часть — положительно. Так как отрицательные заряды притягиваются к положительным, соответствующие “бусинки” “слипаются”. Электростатические взаимодействия, или, как их называют иначе, солевые мостики, — ещё одна важная сила, стабилизирующая третичную структуру.

У семи основных аминокислот есть полярные боковые цепи. Между ними могут возникать водородные связи, тоже играющие немалую роль в поддержании пространственной структуры белка.

Между двумя аминокислотными остатками цистеина иногда образуются ковалентные связи (—S—S—), которые очень прочно фиксируют расположение разных участков белковой цепи по отношению друг к другу. Такие связи называют дисуль-фидными мостиками. Это самые немногочисленные взаимодействия в белках (в некоторых случаях они вообще отсутствуют), зато по прочности они не имеют равных.

ВЫСШИЙ УРОВЕНЬ ПРОСТРАНСТВЕННОЙ ОРГАНИЗАЦИИ БЕЛКОВ

Молекула белка может состоять не из одной, а из нескольких полипептидных цепей. Каждая такая цепь представляет собой самостоятельную пространственную структуру — субь-единицу. Например, белок гемоглобин состоит из четырёх субъединиц, которые образуют единую молекулу, располагаясь в вершинах почти правильного тетраэдра. Субъединицы “прилипают” друг к другу благодаря тем же самым силам, что стабилизируют третичную структуру. Это гидрофобные взаимодействия, солевые мостики и водородные связи.

Если белок состоит из нескольких субъединиц, говорят, что он обладает четвертичной структурой. Такая структура представляет собой высший уровень организации белковой молекулы. В отличие от первых трёх уровней четвертичная структура есть далеко не у всех белков. Приблизительно половина из известных на сегодняшний день белков её не имеют.

ПОЧЕМУ БЕЛКИ БОЯТСЯ ТЕПЛА

Связи, поддерживающие пространственную структуру белка, довольно легко разрушаются. Мы с детства знаем, что при варке яиц прозрачный яичный белок превращается в упругую белую массу, а молоко при скисании загустевает. Происходит это из-за разрушения пространственной структуры белков альбумина в яичном белке и казеина (огглат. caseus — “сыр”) в молоке. Такой процесс называется денатурацией. В первом случае её вызывает нагревание, а во втором — значительное увеличение кислотности (в результате жизнедеятельности обитающих в молоке бактерий). При денатурации белок теряет способность выполнять присущие ему в организме функции (отсюда и название процесса: от лат. denaturare — “лишать природных свойств”). Денатурированные белки легче усваиваются организмом, поэтому одной из целей термической обработки пищевых продуктов является денатурация белков.

ЗАЧЕМ НУЖНА ПРОСТРАНСТВЕННАЯ СТРУКТУРА

В природе почти ничего не происходит случайно. Если белок принял определённую форму в пространстве, это должно служить достижению какой-то цели. Действительно, только белок с “правильной” пространственной структурой может обладать определёнными свойствами, т. е. выполнять те функции в организме, которые ему предписаны. А делает он это с помощью всё тех же R-групп аминокислот. Оказывается, боковые цепи не только поддерживают “правильную” форму молекулы белка в пространстве. R-группы могут связывать другие органические и неорганические молекулы, принимать участие в химических реакциях, выступая, например, в роли катализатора.

Часто сама пространственная организация полипептидной цепи как раз' и нужна для того, чтобы сосредоточить в определённых точках пространства необходимый для выполнения той или иной функции набор боковых цепей. Пожалуй, ни один процесс в живом организме не проходит без участия белков.

В ЧЁМ СЕКРЕТ ФЕРМЕНТОВ

Все химические реакции, протекающие в клетке, происходят благодаря особому классу белков — ферментам. Это белки-катализаторы. У них есть свой секрет, который позволяет им работать гораздо эффективнее других катализаторов, ускоряя реакции в миллиарды раз.

Предположим, что несколько приятелей никак не могут встретиться. Но стоило одному из них пригласить друзей на день рождения, как результат не заставил себя ждать: все оказались в одном месте в назначенное время.

Чтобы встреча состоялась, понадобилось подтолкнуть друзей к контакту. То же самое делает и фермент. В его молекуле есть так называемые цгнтры связывания. В них расположены привлекательные для определённого типа химических соединений (и только для них!) “уютные кресла” — R-группы, связывающие какие-то участки молекул реагирующих веществ. Например, если одна из молекул имеет неполярную группу, в центре связывания находятся гидрофобные боковые цепи. Если же в молекуле есть отрицательный заряд, его будет поджидать в молекуле фермента R-группа с положительным зарядом.

В результате обе молекулы реагентов связываются с ферментом и оказываются в непосредственной близости друг от друга. Мало того, те их группы, которые должны вступить в химическую реакцию, сориентированы в пространстве нужным для реакции образом. Теперь за дело принимаются боковые цепи фермента, играющие роль катализаторов. В ферменте все “продумано” таким образом, что R-группы-катализаторы тоже расположены вблизи от места событий, которое называют активным центром. А после завершения реакции фермент “отпускает на волю” молекулы-продукты (см. статью “Ферменты — на все руки мастера”).

ОТКУДА БЕРЁТСЯ ИММУНИТЕТ

Белки выполняют в организме множество функций; они, например, защищают клетки от нежелательных вторжений, предохраняют их от повреждений. Специальные белки — антитела обладают способностью распознавать проникшие в клетки бактерии, вирусы, чужеродные полимерные молекулы и нейтрализовывать их.

У высших позвоночных от чужеродных частиц организм защищает иммунная система. Она устроена так, что организм, в который вторглись такие “агрессоры” — антигены, начинает вырабатывать антитела. Молекула антитела прочно связывается с антигеном: у антител, как и у ферментов, тоже есть центры связывания. Боковые цепи аминокислот расположены в центрах таким образом, что антиген, попавший в эту ловушку, уже не сможет вырваться из “железных лап” антитела. После связывания с антителом враг выдворяется за пределы организма.

Можно ввести в организм небольшое количество некоторых полимерных молекул, входящих в состав бактерий или вирусов-возбудителей какой-либо инфекционной болезни.

В организме немедленно появятся соответствующие антитела. Теперь попавший в кровь или лимфу “настоящий” болезнетворный микроб тотчас же подвергнется атаке этих антител, и болезнь будет побеждена. Такой способ борьбы с инфекцией есть не что иное, как нелюбимая многими прививка. Благодаря ей организм приобретает иммунитет к инфекционным болезням.

ДЛЯ ЧЕГО В ГЕМОГЛОБИНЕ ЖЕЛЕЗО

В природе существуют белки, в которых помимо аминокислот содержатся другие химические компоненты, такие, как липиды, сахара, ионы металлов. Обычно эти компоненты играют важную роль при выполнении белком его биологической функции. Так, перенос молекул и ионов из одного органа в другой осуществляют транспортные белки плазмы крови. Белок гемоглобин (от греч. “гема” — “кровь” и лат. globus — “шар”, “шарик”), содержащийся в кровяных клетках — эритроцитах (от греч. “эритрос” — “красный” и “китос” — “клетка”), доставляет кислород от лёгких к тканям. В молекуле гемоглобина есть комплекс иона железа Fe 24 " со сложной органической молекулой, называемый гемам. Гемоглобин состоит из четырёх белковых субъединиц, и каждая из них содержит по одному гему.

В связывании кислорода в лёгких принимает участие непосредственно ион железа. Как только к нему хотя бы в одной из субъединиц присоединяется кислород, сам ион тут же чуть-чуть меняет своё расположение в молекуле белка. Движение железа “провоцирует” движение всей аминокислотной цепочки данной субъединицы, которая слегка трансформирует свою третичную структуру. Другая субъединица, ещё не присоединившая кислород, “чувствует”, что произошло с соседкой. Её структура тоже начинает меняться. В итоге вторая субъединица связывает кислород легче, чем первая. Присоединение кислорода к третьей и четвёртой субъединицам происходит с ещё меньшими трудностями. Как видно, субъединицы помогают друг другу в работе. Для этого-то гемоглобину и нужна четвертичная структура. Оксид углерода СО (в просторечии угарный газ) связывается с железом в геме в сотни раз прочнее кислорода. Угарный газ смертельно опасен для человека, поскольку лишает гемоглобин возможности присоединять кислород.

А ЕЩЁ БЕЛКИ...

...Служат питательными веществами. В семенах многих растений (пшеницы, кукурузы, риса и др.) содержатся пищевые белки. К ним относятся также альбумин — основной компонент яичного белка и казеин — главный белок молока. При переваривании в организме человека белковой пищи происходит гидролиз пептидных связей. Белки “разбираются” на отдельные аминокислоты, из которых организм в дальнейшем “строит” новые пептиды или использует для получения энергии. Отсюда и название:

греческое слово “пептос” означает “переваренный”. Интересно, что гидролизом пептидной связи управляют тоже белки — ферменты.

...Участвуют в регуляции клеточной и физиологической активности. К подобным белкам относятся многие гормоны (от греч. “гормао” — “побуждаю”), такие, как инсулин, регулирующий обмен глюкозы, и гормон роста.

...Наделяют организм способностью изменять форму и передвигаться. За это отвечают белки актин и миозин, из которых построены мышцы.

...Выполняют опорную и защитную функции, скрепляя биологические структуры и придавая им прочность. Кожа представляет собой почти чистый белок коллаген, а волосы, ногти и перья состоят из прочного нерастворимого белка кератина.

ЧТО ЗАПИСАНО В ГЕНАХ

Последовательность аминокислот в белках кодируется генами, которые хранятся и передаются по наследству с помощью молекул ДНК (см. статьи “Хранитель наследственной информации. ДНК” и “Экспрессия генов”). Пространственную структуру белка задаёт именно порядок расположения аминокислот. Получается, что не только первичная, но и вторичная, третичная и четвертичная структуры белков составляют содержание наследственной информации. Следовательно, и выполняемые белками функции запрограммированы генетически. Громадный перечень этих функций позволяет белкам по праву называться главными молекулами жизни. Поэтому сведения о белках и есть то бесценное сокровище, которое передаётся в природе от поколения к поколению.

Интерес человека к этим органическим соединениям с каждым годом только увеличивается. Сегодня учёные уже расшифровали структуру многих белковых молекул. Они выясняют функции самых разных белков, пытаются определить взаимосвязь функций со структурой. Установление сходства и различий у белков, выполняющих аналогичные функции у разных живых организмов, позволяет глубже проникать в тайны эволюции.

АМИНОКИСЛОТЫ — ПОКАЗАТЕЛИ ВОЗРАСТА

D- и L-формы аминокислот обладают способностью очень медленно превращаться друг в друга. За определённый (весьма длительный) период времени чистая D- или I-форма может стать смесью равных количеств обеих форм. Такая смесь называется раиемагом, а сам процесс — раие-мизаиией. Скорость рацемизации зависит от температуры и типа аминокислоты. Данное свойство можно использовать для определения возраста ископаемых остатков организмов, а при необходимости — и живых существ. Например, в белке дентина (дентин — костная ткань зубов) 1-ас-парагиновая кислота самопроизвольно раиемизуется со скоростью 0,1 % в год. У детей в период формирования зубов в дентине содержится только 1-аспарагиновая кислота. Дентин выделяют из зуба и определяют В нём содержание 0-формы. Результаты теста достаточно точны. Так, для 97-летней женщины, возраст которой был документально засвидетельствован, тест показал возраст 99 лет. Данные исследований, выполненных на ископаемых остатках доисторических животных — слонов, дельфинов, медведей, — хорошо согласуются с результатами датирования, полученными радионуклидным методом.

ЗА ЧТО СЕНГЕР ПОЛУЧИЛ НОБЕЛЕВСКИЕ ПРЕМИИ

При гидролизе белков до аминокислот (разрушении пептидной связи водой) теряется информация о последовательности их соединения. Поэтому долгое время считали, что определение первичной структуры белка представляет собой совершенно безнадежную задачу. Но в 50-х гг. XX в. английский биохимик Фредерик Сенгер (родился в 1918 г.) смог расшифровать последовательность аминокислот в полипептидных цепях гормона инсулина. За эту работу, на выполнение которой ушло несколько лет, в 1958 г. Сенгер был удостоен Нобелевской премии по химии (двадцатью годами позже он совместно с У. Гилбертом получил вторую премию за вклад в установление первичной структуры ДНК).

Принципы определения аминокислотной последовательности, впервые сформулированные Сенгером, используются и ныне, правда, со всевозможными вариациями и усовершенствованиями. Процедура установления первичной структуры белка сложна и многоступенчата: в ней около десятка различных стадий. Сначала белок расщепляют до отдельных аминокислот и устанавливают их тип и количество в данном веществе. На следующей стадии длинную белковую молекулу расщепляют уже не полностью, а на фрагменты. Затем в этих фрагментах определяют порядок соединения аминокислот, последовательно отделяя их одну за другой. Расшепление белка на фрагменты проводят несколькими способами, чтобы в разных фрагментах были перекрывающиеся участки. Выяснив порядок расположения аминокислот во всех фрагментах, получают полную информацию о том, как аминокислоты расположены в белке. К концу XX в. созданы специальные приборы, определяющие последовательность аминокислот в молекуле белка в автоматическом режиме — секвенаторы (от англ. sequence — “последовательность”).

МОЛОКО И КИСЛОМОЛОЧНЫЕ ПРОДУКТЫ

Молоко представляет собой коллоидный раствор жира в воде. Под микроскопом хорошо видно, что оно неоднородно: в бесцветном растворе (сыворотке) плавают жировые шарики.

В коровьем молоке обычно содержится от 3 до 6 % жиров (в основном это сложные эфиры глицерина и насыщенных карбоновых кислот - пальмитиновой, стеариновой), около 3 % белков, а ешё углеводы, органические кислоты, витамины и минеральные вещества.

Белок казеин в молоке присутствует в связанном виде - ковалентно присоединённые к аминокислоте сери-ну фосфатные группы образуют соли с ионами кальция. При подкислении молока эти соли разрушаются, и казеин выделяется в виде белой творожистой массы. В желудке человека под действием особых ферментов происходит процесс, называемый “створажива-нием казеина”. Створоженный казеин выпадает в осадок и медленнее выводится из организма, а потому полнее усваивается. Казеин высоко питателен:

в нём есть почти все аминокислоты, необходимые человеку для построения собственных белков. В чистом виде он представляет собой безвкусный белый порошок, не растворимый в воде. Помимо него в молоке содержатся и другие белки, например лактальбумин. При кипячении этот белок превращается в нерастворимую форму, образуя на поверхности кипячёного молока характерную белую плёнку - пенку.

Входящий в состав молока сахар лактоза С^НддО,, изомерен сахарозе. В организме человека под действием фермента лактазы этот сахар расщепляется на моносахариды глюкозу и галактозу, которые легко усваиваются. За счёт этого, например, грудные дети пополняют запасы углеводов. Интересно, что у многих людей (в основном у представителей монголоидной расы) организм в зрелом возрасте утрачивает способность расщеплять лактозу.

Проходя через пищеварительный тракт, лактоза не усваивается, а становится питательной средой для развития различных болезнетворных микроорганизмов, что приводит к общему недомоганию. Именно поэтому народы Дальнего Востока (японцы, китайцы) практически не употребляют в пишу молочные продукты.

В промышленных условиях молоко подвергают тепловой обработке, цель которой - подавить развитие микроорганизмов и продлить срок его хранения. Для этого молоко пастеризуют - выдерживают 30 мин при 65 °С, а также используют кратковременную термообработку - нагревают в течение 10-20 с до 71 °С. По сравнению с пастеризацией термообработка лучше сохраняет питательные вещества, в первую очередь витамины. Чтобы молоко не расслаивалось на сливки и сыворотку, его гомогенизируют - пропускают под давлением через небольшие отверстия. Жировые шарики дробятся, уменьшаются в размерах, а молоко становится более вязким.

Значительная часть молока идёт на переработку - для производства сливочного масла, сыра и кисломолочных продуктов (кефира, ряженки, простокваши, сметаны).

Чтобы получить кефир, молоко сквашивают - выдерживают в течение 8-10 ч при 20-25 °С, добавляя затравку молочнокислых бактерий. Под их действием лактоза распадается до молочной кислоты:

с„н„о„ + н,о =

лактоза

== 4СНзСН(ОН)СООН. молочная (2-гидроксипропановая) кислота

Именно молочная кислота определяет специфический вкус кефира. По мере того как она накапливается в растворе, происходит коагуляция (свёртывание)казеина, который выделяется в свободном виде. Поэтому кефир имеет более густую консистенцию, чем молоко. Молочнокислое сбраживание лактозы сопровождается спиртовым брожением, из-за чего в кисломолочных продуктах, в частности в кефире, есть небольшое количество алкоголя (до 0,03 %). В кисломолочных продуктах содержатся также микроорганизмы, которые подавляют развитие болезнетворных бактерий и тем самым улучшают пишеварение.

Творог тоже получают сквашиванием молока молочнокислыми бактериями. Его главной составной частью является белок казеин.

Чтобы приготовить сливочное масло, от молочной сыворотки необходимо отделить капельки жира, входящие в состав молока. Для этого сбивают сливки - верхний, более жирный слой, образующийся при отстаивании молока.

Казеин входит также в состав сыров. Их делают, добавляя в молоко бактериальную закваску и специальные ферменты, а затем подогревая смесь до определённой температуры. В выделившийся сгусток вновь вводят ферменты и подогревают. При этом происходит частичное изменение структуры и состава казеина. Затем смесь раскладывают по формам и длительное время - до шести месяцев - выдерживают при низкой температуре (не выше 15 °С). Во время созревания казеин под действием ферментов распадается на поли-пептиды и свободные аминокислоты. Часть аминокислот окисляется кислородом воздуха, при этом образуются аммиак, альдегиды, а также кетокислоты, придающие сыру характерный аромат.

 

Следующая страница



 
     
 

2021 © Copyright, Abcreferats.ru
E-mail:

 

Яндекс.Метрика