Только лучшие рефераты рунета    
 
 

Партнеры:



 
 

Реферат "Общая биология, учебное пособие для 10 - 11 классов "






Общая биология, учебное пособие для 10 - 11 классов

 

Третье значение фотосинтеза сводится к обеспечению непрерывного баланса между кислородом и углекислым газом. Ежегодно около 200 миллионов тонн кислорода поглощается в результате дыхания организмами, а также сжигается человеком в результате хозяйственной деятельности. Однако газовый состав атмосферы остается относительно постоянным, кислорода в атмосфере около 20%. Сохранение постоянства содержания кислорода в атмосфере возможно только благодаря выделению его в результате фотосинтеза.

Вместе с тем благодаря фотосинтезу значительно сдерживается увеличение концентрации углекислого газа, выделяемого при дыхании и сжигании человеком различных видов топлива. Поглощение углекислого газа не позволяет Земле перегреваться в результате увеличения парникового эффекта.

Эффективность фотосинтеза

Эксперименты ученых показали, что при фотосинтезе лишь 1-2% солнечной энергии света, попадающего на зеленый лист растения, преобразуется в энергию глюкозы.

Повысить эффективность фотосинтеза можно, обеспечив растение достаточным количеством воды (как при помощи полива, так и в результате повышения влажности воздуха) и углекислым газом. Большое значение при повышении эффективности фотосин-

38

теза имеет обеспечение растений нитратами и микроэлементами. Среди микроэлементов наибольшую роль играет магний.

1.6.6. ГЛИКОЛИЗ

        Гликолизом называются ферментативные реакции бескислородного расщепления углеводов до молекул молочной кислоты ( С 3 Н 6 О 3 ). Рассмотрим гликолиз на примере расщепления глюкозы. Этот процесс протекает в цитоплазме клетки. Общая формула гликолиза выглядит так:

С 6 Н 12 О 6 →2С 3 Н 6 О 3 + энергия

        Несмотря на простоту этой формулы, гликолиз глюкозы протекает в десять стадий, каждая из которых катализируется определенным ферментом. Выделяемая в ходе гликолиза энергия запасается в виде четырех молекул АТФ:

4АДФ+4Ф+ энергия=4АТФ

Однако две молекулы АТФ используются в самом процессе гликолиза. Поэтому в итоге гликолиз одной молекулы глюкозы дает клетке две молекулы АТФ.

Значение гликолиза. В результате гликолиза запасается лишь 5% от всей энергии, которая может быть получена при полном расщеплении глюкозы до конечных продуктов СО 2 и Н 2 О. Несмотря на это гликолиз играет огромную роль в жизни организмов, как процесс проходящий без кислорода:

1.      благодаря гликолизу получают энергию все животные, ведущие анаэробный образ жизни (круглые и плоские черви);

2.      для любого организма гликолиз является первой стадией расщепления углеводов;

3.      ткани и отдельные клетки организма способны функционировать при нехватке кислорода, благодаря энергии, выделяемой в ходе гликолиза. Например, мышцы человека при очень больших нагрузках получают недостаточно кислорода для полного окисления глюкозы, поэтому вынуждены работать, используя энергию, выделяемую при гликолизе. В результате в мышцах накапливается молочная кислота, вызывающая в них болезненные ощущения.

39

1.6.7. ДЫХАНИЕ

        С точки зрения метаболизма клетки под дыханием понимается совокупность всех окислительных реакций расщепления сложных органических соединений, проходящих с участием кислорода. Частным случаем дыхания является окисление молочной кислоты до конечных продуктов распада углекислого газа и воды:

С 3 Н 6 О 3 +3О 2 →3СО 2 +3Н 2 О + энергия

        В отличие от гликолиза дыхание происходит только в митохондриях клетки.

Энергия, выделенная при окислении одной молекулы молочной кислоты, запасается в виде 17 молекул АТФ. Если учесть, что при расщеплении одной молекулы глюкозы получаются две молекулы молочной кислоты, следовательно, на этапе окисления одной молекулы глюкозы получается 34 молекулы АТФ, а совокупность реакций гликолиза и окисления глюкозы дает 36 молекул АТФ.

Значение дыхания. Как видно дыхание дает значительно больше энергии, запасенной в виде АТФ, чем гликолиз. Этим определяется большое значение этого процесса для клетки и организма в целом. Благодаря такому высоко эффективному процессу получения энергии как дыхание живые организмы получили высокий уровень обмена веществ, высокую активность и темпы роста. Вместе с тем древнейшие обитатели нашей планеты, жившие в бескислородной атмосфере, могли получать энергию только анаэробным путем (например, путем гликолиза). Использование кислорода как окислителя органики началось лишь после его накопления в атмосфере в результате деятельности фотосинтезирующих одноклеточных организмов.

2. ВИРУСЫ

        Первый вирус открыт в 1892 году Д.И. Ивановским (вирус табачной мозаики). В настоящее время известно около тысячи вирусов. Вирусы внутриклеточные паразиты. К вирусным относятся такие заболевания человека как весенне-летний клещевой энцефалит, грипп, оспа, корь, детский паралич, гепатит, некоторые фор-

40

мы рака. Существует большое число вирусных болезней животных и растений. Вирусы способны паразитировать даже на клетках бактерий. Такие вирусы называются бактериофагами .

Вирусы, как правило, имеют очень малые размеры и большинство из них видны только в электронный микроскоп. Все вирусы имеют в своем составе нуклеиновую кислоту и белковую капсулу. Каждый вирус имеет только один тип нуклеиновой кислоты либо ДНК, либо РНК. Наблюдается большое разнообразие в строении вирусных нуклеиновых кислот. Так существуют вирусы, имеющие одноцепочечную ДНК, или одноцепочечную РНК, также есть вирусы с двухцепочечной ДНК, или двухцепочечной РНК.

        Вирусы существуют в двух формах: в неактивной форме - вне клетки и в активной форме - внутри клетки. Проникнув через мембрану в здоровую клетку, вирус использует ферменты пораженной им клетки для синтеза собственных белков на матрице вирусной нуклеиновой кислоты. Затем происходит редупликация вирусной нуклеиновой кислоты и сборка новой вирусной частицы, которая покидает клетку. Исследования ученых вирусологов показали, что поражение клетки одной вирусной частицей препятствует заражению второй частицей.

В клетке, пораженной вирусом, могут произойти различные патологические изменения: приостановка синтеза собственных белков, перерождение в раковую клетку и даже гибель. Для защиты против вирусов клетки способны вырабатывать специальный белок интерферон . Синтез интерферона стимулируется введением в клетку чужеродной нуклеиновой кислоты.

Строение и функционирование вируса не позволяет однозначно признать его живым или неживым. Можно считать вирусы промежуточной формой. Вместе с тем вполне употребимо определение вируса как неклеточной формы жизни.

В настоящее время окончательно не установлено происхождение вирусов. Однако многие ученые считают, что вирусы произошли от бактериальных клеток или отдельных органелл эукариотических клеток (митохондрий или хлоропластов) в результате

41

перехода их к внутриклеточному паразитизму и упрощению строения.

3. ОРГАНИЗМ И ЕГО РАЗВИТИЕ

Онтогенез – это индивидуальное развитие организма, от оплодотворенной яйцеклетки – зиготы до смерти организма. Онтогенез разделяется на два этапа: эмбриогенез и постэмбриогенез.

3.1 ЭМБРИОГЕНЕЗ

Эмбриогенез или эмбриональное развитие – это развитие организма от оплодотворения яйцеклетки до рождения или вылупления. Рассмотрим стадии эмбрионального развития.

1.      Дробление – это последовательных митотических делений зиготы и следующих поколений клеток, в результате которых образуются все более мелкие клетки, все вместе не превышающие размерами исходную зиготу. При дроблении появляющиеся поколения клеток не отличаются друг от друга ни строением, ни выполняемыми функциями. Про такие клетки говорят, что они не дифференцированы. В зависимости от особенностей строения зиготы дробление протекает по-разному. Можно выделить три типа дробления.

a.       Неполное дробление наблюдается у животных, зиготы которых имеют огромный запас питательных веществ, например, у птиц и пресмыкающихся. Хорошо всем известный желток яйца курицы есть ничто иное, как зигота (или яйцеклетка). В такой зиготе ядро плавает на ее поверхности. Эта часть зиготы называется анимальным полюсом . На противоположном конце от ядра находится так называемый вегетативный полюс . Таким образом, можно сказать, что у при неполном дроблении деление протекает только на анимальном полюсе зиготы.

b.      Полное неравномерное дробление наблюдается у животных, зиготы которых имеют много питательных веществ (но меньше, чем у птиц и пресмыкающихся) например у рыб и земноводных. Зигота этих животных (икринка) делится полностью, но уже после нескольких делений частота делений клеток анимального полюса становится заметно выше, чем у клеток вегетативного

42

полюса.

c.       Полное равномерное дробление встречается у животных, зиготы которых имеют относительно малое количество питательных веществ цитоплазмы. К ним относятся млекопитающие и головохордовые (ланцетник). В зиготе слабо выражены анимальный и вегетативный полюса, поэтому зигота делится полностью и дальнейшее деление клеток идет почти с одинаковой интенсивностью, как на анимальном, так и на вегетативном полюсе.

Рассмотрим более подробно дробление зиготы ланцетника. Первые два деления зиготы проходят меридионально, то есть в вертикальной плоскости. Следующее деление происходит в широтном направлении. Затем все последующие деления представляют строгое чередование делений клеток меридионально и широтно. Так постепенно количество клеток растет, их скопление имеет шаровидную форму и называется бластула . Бластула представляет собой полый шар, размеры которого не превосходят исходную зиготу. Полость внутри называется бластопор . Стенки бластулы образованы только одним слоем клеток.

2.      Гаструляция – это следующая за дроблением стадия эмбрионального развития. У ланцетника гаструляция проходит относительно просто. Часть клеток бластулы начинает впячиваться внутрь. Такое впячивание стенки внутрь полости называется инвагинация клеток. Инвагинирующие клетки проникают все глубже и глубже внутрь бластоцеля, пока не встретятся с клетками противоположной стенки бластулы. На этом инвагинация заканчивается. Ее результатом явилась совершенно новая структура зародыша, называемая гаструла . Гаструла имеет несколько удлиненную форму. На одном конце гаструлы находится отверстие, образованное в результате инвагинации клеток участка бластулы. Это отверстие называется гастропор . Сама гаструла состоит из двух слоев клеток: наружного слоя, называемого эктодермой и внутреннего (из инвагинировавших клеток), называемого энтодермой . Эктодерма и энтодерма являются зародышевыми тканями. В конце га-

43

3.      струляции происходит образование третьей зародышевой ткани мезодермы . Мезодерма образуется между экто- и энтодермой, в результате миграции некоторых клеток энтодермы.

4.      Органогенез – это процесс сложной дифференциации клеток трех зародышевых тканей, в результате которого происходит образование всех органов. Органогенез протекает под действием двух внутренних факторов.

a.       Тканевая индукция – это способность некоторых клеток зародыша определять особенности развития соседних клеток. Так, например, под воздействием некоторых клеток энтодермы, контактирующие с ними клетки эктодермы, инвагинируют внутрь и образуют спиной мозг. Следовательно, участок энтодермы является индуктором спинного мозга.

b.      Генетическое детерминирование – это управление генами процессом развития отдельных клеток, тканей и органов.

Три зародышевые ткани являются исходным материалом в развитии всех органов. Так из эктодермы развиваются нервная система, глаза, наружный слой кожи. Мезодерма дает начало мышцам, скелету, кровеносной системе, почкам. Энтодерма образует почти весь пищеварительный тракт, печень, легкие, поджелудочную железу.

        Развивающийся в утробе матери зародыш хорошо защищен от внешних воздействий, но, тем не менее, внешние факторы могут играть заметную роль в эмбриональном развитии. Для правильного развития зародыш должен получать все необходимые витамины, макро- и микроэлементы, а также полный набор аминокислот. Вместе с тем нормальное развитие может быть нарушен многими неблагоприятными факторами, к которым относятся табачный дым, содержащий около сорока токсичных веществ, этиловый спирт, наркотические вещества, химические пищевые добавки (красители, эмульгаторы, ароматизаторы и пр.), проникающее электромагнитное излучение, тяжелые металлы (свинец, кадмий, ртуть и др.). Большинство из перечисленных факторов обладают сильно выраженным мутагенным эффектом. Мутации на

44

ранних стадиях эмбриогенеза вызывают появление уродств, нарушение развития центральной нервной системы и могут приводить к гибели зародыша.

3.2. ПОСТЭМБРИОГЕНЕЗ

Постэмбриогенез или послеэмбриональное развитие – это развитие от раждения или вылупления до смерти. Для человека выделяют 11 этапов послеэмбрионального развития (таблица 2).Каждый этап характеризуется специфическими особенностями строения и функционирования как организма в целом, так и его отдельных частей. Рассмотрим некоторые из периодов развития человека.

Новорожденный заметно отличается от взрослого человека пропорциями тела. Так, он имеет относительно короткие конечности, но крупную голову и туловище. Начиная с раннего детства рост головы замедляется, а рост конечностей усиливается. Во все периоды детства рост ребенка происходит главным образом за счет роста конечностей. Вместе с тем в детстве продолжается увеличение головного мозга, растет сердце и мышечная масса туловища и конечностей, заканчивается формирование легочной ткани. По мере развития головного мозга ребенок овладевает членораздельной речью.

Начиная с подросткового возраста рост, осуществляется, прежде всего, за счет роста туловища. В этот период происходит интенсивное развитие мышц кистей рук. Движения рук и пальцев становятся точными. В связи с усложнением двигательной деятельности, заканчивается и развитие нервных клеток коры больших полушарий головного мозга. В подростковом возрасте завершается смена молочных зубов. Для подросткового возраста характерно интенсивное формирование половой системы, поэтому развитие многих систем органов приобретают все более выраженные половые различия. Так в начале подросткового периода у мальчиков наблюдается отставание в темпах роста. К концу подросткового периода мальчики перегоняют девочек в росте, а также, начиная с 15-летнего возраста, масса мальчиков превышает массу девочек.

45

Таблица 2. Этапы постэмбрионального развития человека.

 

Новорожденный

-

1-10 дней

 

 

грудной возраст

 

1-0 дней-1 год

 

 

раннее детство

 

1-3 года

 

 

первое детство

 

4-7 лет

 

 

второе детство

 

8-12 лет

мальчики

 

 

 

8-11 лет

девочки

 

подростковый возраст

 

13-16 лет

мальчики

 

 

 

12-15 лет

девочки

 

юношеский возраст

 

17-21 год

юноши

 

 

 

16-20 лет

девушки

 

зрелый возраст, 1 период

 

22-35 лет

мужчины

 

 

 

22-35 лет

женщины

 

зрелый возраст, 2 период

 

36-60 лет

мужчины

 

 

 

36-55 лет

женщины

 

пожилой возраст

 

61-74 года

мужчины

 

 

 

56-74 года

женщины

 

старческий возраст

 

75-90 лет

 

 

Долгожители

 

90 лет и выше

 

В юношеском возрасте рост, как правило, заканчивается. Прекращение роста связано с усилением процессов дифференциации клеток, тканей, органов и целых систем органов. В этот период окончательно формируются опорно-двигательная, половая, кровеносная системы.

4. ГЕНЕТИКА

Генетика – это биологическая наука, изучающая наследственность и изменчивость организмов.

4.1. ИЗМЕНЧИВОСТЬ

        Изменчивость – это свойство всех живых организмов изменять свои признаки. Изменчивость принято разделять на два типа:

46

модификационную и наследственную.

4.1.1. ТИПЫ ИЗМЕНЧИВОСТИ

Модификационной называют изменчивость, не передающуюся по наследству. Модификационная изменчивость затрагивает только фенотип - совокупность всех признаков и свойств организма, не влияя на состав генов. Она имеет следующие свойства.

1.      Адаптивный (приспособительный) характер. Любая модификационная изменчивость является приспособлением организма к изменяющимся условиям среды. Например, низкие температуры вызывают развитие у тетеревиных птиц дополнительного оперения, а у млекопитающих – увеличение густоты шерсти. Изменение густоты покрова способствует сохранению тепла.

2.      Групповой характер проявления: в определенных условиях не одна особь, а все особи (одного вида, рода или другой систематической группы) будут иметь одинаковую изменчивость. Например, при содержании нескольких лаек зимой на улице, изменится густота подшерстка не у одной собаки, а у всех. Выращивание растений на влажной теплой почве приводит к развитию крупных листьев.

Наследственной (генотипической) называют изменчивость, передающуюся по наследству. Наследственная изменчивость затрагивает не только фенотип, но и генотип - совокупность генов организма. Она имеет следующие свойства.

1.      Случайный, как правило, неадаптивный характер проявления. Например, облучение жестким ультрафиолетом куколки плодовой мухи может вызвать появление самых разнообразных признаков, например, укороченные крылья. Хотя данный признак никак не влияет на выживаемость мухи в условиях облучения.

2.      Индивидуальный характер проявления. В одинаковых условиях среди особей одного вида могут возникать различные наследственные изменения. Так облучение рентгеновскими лучами зародышей лисят может вызвать такие изменения как: вислоухость, шестипалость, сросшиеся пальцы и другие наследственные нарушения.

47

Наследственная изменчивость представлена следующими формами.

1.      Рекомбинантная изменчивость – это разновидность наследственной изменчивости, при которой новые признаки появляются в результате изменения сочетаний уже имеющихся в генотипе генов. Источником рекомбинантной изменчивости является кроссинговер.

2.      Мутационная изменчивость – это такая разновидность наследственной изменчивости, при которой появляются качественно новые гены (генные мутации), структурные изменения отдельных хромосом (хромосомные мутации) или изменение целого хромосомного набора (геномные мутации). Причиной мутационной изменчивости являются так называемые мутагенные факторы среды. К наиболее известным относятся высокая температура, жесткое ультрафиолетовое и рентгеновское излучение, гамма-лучи, бетта- и альфа-частицы, нитраты, эпоксиды, никотин.

4.1.2. НОРМА РЕАКЦИИ

Нормой реакции называется степень реагирования организма в ответ на внешние факторы среды, или степень модификационной изменчивости. В отличие от самой модификационной изменчивости, норма реакции является наследуемым признаком. Рассмотрим следующий пример. Известно, что скармливание корнеплодов увеличивает надои молока крупного рогатого скота. Изменение надоев в данном случае является типичным примером модификационной изменчивости. Однако, замечено, что одинаковое количество корнеплодов в разной степени влияет на удои разных коров. Наиболее увеличивается количество молока у коров молочных пород. Да и среди животных одной породы степень выраженности реакции также различна. Тоже можно сказать и про уменьшение в рационе корнеплодов: у различных животных в различной степени будет выражено уменьшение надоев.

Таким образом, величина надоя хоть и является модификационной изменчивостью со свойственной ей групповой формой проявления, но степень этой изменчивости строго индивидуальна

48

для каждой коровы. Иными словами норма реакции является индивидуальным свойством организма.

Изучение нормы реакции демонстрирует различную широту изменения этого признака. Про организм с широкими пределами изменений какого-либо модификационного признака говорят, что он имеет широкую норму реакции, а про организм с небольшими возможными изменениями – узкую норму реакции.

4.1.3. ЗАКОН ГОМОЛОГИЧЕСКИХ РЯДОВ

        Закон гомологических рядов был выведен выдающимся отечественным генетиком Н.И. Вавиловым в 1920 году на злаковых растениях. Однако этот закон имеет общебиологическое проявление. Он гласит: близкородственные виды и роды имеют сходный набор наследственных изменений.

Открытый Вавиловым закон имеет большое значение в сельском хозяйстве. Зная, какие наследственные изменения и с какой вероятностью встречаются среди особей одного хорошо изученного сорта растений или породы животных, селекционеры предсказывают появление подобных изменений и среди близкородственных малоизученных сортов или пород. Сам Н.И. Вавилов успешно использовал этот закон в своей практической деятельности. Он изучил направление наследственной изменчивости диких предков многих культурных растений, что позволило ему при выведении новых сортов растений, предсказывать предрасположенность растений к тем или иным наследственным изменениям.

4.2. НАСЛЕДСТВЕННОСТЬ

        Наследственность – это фундаментальное свойство всего живого, которое заключается в том, что все живые организмы способны хранить информацию о своем строении и передавать эту информацию другим поколениям. Человечество проделало долгий и нелегкий путь, чтобы правильно понять причины и законы наследственности.

4.2.1. ЗАКОНЫ НАСЛЕДСТВЕННОСТИ

        Основные законы наследственности открыл и описал в 1865 году чешский ученый Грегор Иоган Мендель. К сожалению, от-

49

крытые Менделем законы, не оказали ни какого влияния на развитие биологии, так как не были понятыми учеными прошлого века. Они были переоткрыты спустя 35 лет независимо работающими учеными из Голландии, Германии и Австрии, но были названы в честь их первооткрывателя.

Методические предпосылки открытия законов Менделя

        Мендель около семи лет занимался выращиванием различных сортов гороха, скрещивал их между собой и описывал результаты своих наблюдений. Для открытия законов наследственности Мендель использовал следующие методические приемы.

1.      Изучал аллельные признаки , то есть такие признаки, которые взаимоисключают друг друга в одном организме (горох с желтыми или зелеными горошинами, а также с гладкими или морщинистыми горошинами).

2.      Использовал метод гибридизации , то есть скрещивание особей отличающихся по одной паре аллельных признаков ( моногибридное скрещивание ) или по двум парам аллельных признаков ( дигибридное скрещивание ).

3.      Использовал для скрещивания чистые линии родительских форм. Чистой линией называют группу особей, которая не дает расщепления признаков при длительном скрещивании особей внутри этой группы.

4.      Использовал статистическую обработку полученных результатов, то есть определял вероятность появления признаков в гибридном поколении.

Первый закон Менделя

        Первый закон Менделя называется законом единообразия первого поколения .

Формулировка : при моногибридном скрещивании двух чистых линий все потомство первого поколения будет единообразно.

Описание опыта. В ходе предварительных опытов Мендель подобрал для скрещивания две группы гороха с желтыми горошинами и с зелеными. Горох каждой из этих групп при скрещивании

50

внутри своей группы давал потомство только родительского цвета

горошин, то есть обе группы были чистыми линиями по окраске семян. Скрестив желтый горох с зеленым, Мендель получил потомство, только с желтыми горошинами. То есть первое гибридное поколение оказалось единообразным, несмотря на то, что родительские формы резко отличались друг от друга. Желтую окраску Мендель назвал доминирующим признаком, так как она подавила проявление другой, зеленой окраски (аллельного признака), а зеленую окраску он назвал рецессивным признаком.

Генетические основы первого закона Менделя . Производя свои опыты, Мендель ничего не знал о ДНК, хромосомах и генах (они не были еще открыты учеными), поэтому оперировал абстрактным понятием Унаследственный факторФ. Сейчас с точки зрения современной генетики результаты первого закона Менделя можно объяснить следующим образом.

Наследственная информация организма хранится в хромосомах каждой его клетки. Любая хромосома образована последовательно расположенными в ней генами. Каждый ген лежит в строго определенном месте хромосомы, как говорят генетики, ген занимает определенный локус. Клетки имеют диплоидный набор хромосом, то есть для каждой хромосомы в любой клетке организма (кроме половой) найдется хромосома одинаковая по строению и со сходным набором генов – гомологичная. Следовательно, удвоены не только хромосомы, но и гены, лежащие в них. Можно сказать, что любая клетка гороха имеет по два гена, отвечающих за цвет горошин, по два гена, отвечающих за форму горошины и т.д. Эти пары генов лежат в разных гомологичных хромосомах, но занимают в них одинаковые локусы. Сейчас хорошо известно, что любой из генов может существовать различных модификациях, отличающихся между собой незначительными особенностями, связанными с последовательностью входящих в его состав нуклеотидов. Например, гены, отвечающие за окраску семян гороха, бывают двух разновидностей: одни обеспечивают желтую окраску горошин, другие – зеленую.

51

Обозначим ген желтой окраски горошины буквой А ; ген зеленой окраски горошины - а . Тогда любая диплоидная клетка скрещиваемых Менделем сортов гороха может быть упрощенно изображена как АА (горох с желтыми горошинами) и аа (горох с зелеными горошинами). При образовании гамет, как известно гомологичные хромосомы расходятся в разные клетки, поэтому горох с желтыми горошинами даст гаметы, каждая из которых может нести только один ген А , а горох с зелеными горошинами даст гаметы с генами а. Родительские формы, дающие гаметы одного типа называются гомозиготными .

Таким образом, результаты первого скрещивания можно изобразить в виде следующей схемы.

Генотипы родителей ( Р )

АА

 

 

Аа

Гаметы родителей

А,А

 

 

А,а

Скрещивание

 

Х

 

Все возможные генотипы гибридного поколения ( F 1 )при слиянии родительских гамет

Аа

Аа

Аа

Аа

 

 

 

 

 

 

Получилось, что любые сочетания гамет А с гаметами а дает только один вариант генотипа Аа .

Горошины полученного гибридного поколения все оказались желтыми, точно такими же, как и горошины одной из родительских форм ( АА ), хотя те и другие имеют различные генотипы. Следовательно, в генотипе Аа проявляет свое действие только ген А , подавляя действие гена а , то есть ген А доминирует над геном а .

Второй закон Менделя

Второй закон Менделя называется законом расщепления признаков при моногибридном скрещивании.

Формулировка : при скрещивании гибридов первого поколения между собой у гибридов второго поколения проявляются признаки исходных родительских форм в соотношении три к одному (3:1).

52

Описание опыта . Мендель посадил желтые горошины, полученные в результате первого скрещивания. После самоопыления выросшего гороха он получил семена как желтые, так и зеленые. Причем сколько бы не повторялся подобный опыт, всякий раз желтых горошин было в три раза больше, чем зеленых.

Генетические основы второго закона Менделя.

Генотипы гибридов первого поколения ( F 1 )

Аа

 

 

Аа

Гаметы гибридов первого поколения ( F 1 )

А,а

 

 

А,а

Скрещивание

 

Х

 

Все возможные генотипы второго гибридного поколения ( F 2 )

АА

Аа

Аа

Аа

Полученные фенотипы

Желтый

желтый

Желтый

Зеленый

 

 

 

 

 

 

Гибриды первого поколения давали гаметы двух типов: либо с геном А , либо с геном а . Особи, дающие гаметы разных типов называются гетерозиготными .

Таким образом, при теоретическом рассмотрении всех возможных сочетаний гамет в генотипах второго поколения оказалось, что по цвету горошин произошло расщепление 3:1. При этом следует заметить, что по генотипу произошло расщепление 1:2:1, так как особи, имеющие одинаковый фенотип (желтую окраску горошин) могут обладать различными генотипами ( АА или Аа ).

Статистический характер проявления второго закона Менделя . Итак, мы рассмотрели теоретически возможное сочетание гамет при получении потомства второго гибридного поколения. А в природных условиях всегда ли будут реализовываться эти сочетания? Давайте представим, как в реальности, а не в теории происходит появление второго гибридного поколения. На цветущих растениях первого гибридного поколения созревают мужские гаметы в пыльцевых зернах и женские гаметы в зародышевом мешке завязи. Эти пыльцевые зерна и зародышевые мешки являются реальными носителями гамет, а следовательно и рассматриваемых нами генов А и а . Не трудно догадаться, что далеко не все пыльцевые

53

зерна примут участие в опылении: одних может унести поток ветра, других могут быть съедены жуками пыльцеедами третьи, по каким-либо причинам, могут не успеть созреть к моменту опыления... Подобная судьба может постичь и отдельные завязи. Вот почему в ходе получения гибридов второго поколения, реально получаемые результаты почти никогда не являются точным математическим воспроизведением соотношения 3:1. Например, во втором гибридном поколении, насчитывающим 400 особей вполне реальны такие результаты расщепления желтых к зеленым: 298:102, или 257: 143, или 316:94 и т.п. то есть соотношение 3:1 выдерживается примерно. А если перед опылением погибнут, ну скажем все пыльцевые зерна с генами а, то не трудно догадаться, что все полученные потомки будут желтыми и расщепления признака не будет вовсе. Однако вероятность такой избирательной гибели очень мала, и что очень важно: вероятность такого события будет тем меньше, чем больше особей гороха примет участие в опылении. Это же можно сказать и относительно проявление второго закона Менделя: расщепление признаков в соотношении три к одному будет примерным, но будет проявляться тем точнее, чем больше скрещиваний мы проведем. В этом и состоит сущность статистического характера проявления второго закона Менделя.

Принцип чистоты гамет

Появление зеленых горошин во втором гибридном поколении продемонстрировало, что этот рецессивный признак присутствовал в первом гибридном поколении, но был скрыт. Одновременно второй закон Менделя доказал, что каждая половая клетка может иметь только один из аллельных генов и УчистаФ от другого аллельного гена. Такое свойство половых клеток получило название принципа чистоты гамет. Этот принцип объясняется гаплоидным набором хромосом любой гаметы.

Третий закон Менделя

Третий закон Менделя называется законом независимого расщепления неаллельных признаков.

Формулировка : при дигибридном скрещивании каждая пара

54

аллельных признаков расщепляется независимо от другой пары.

Описание опыта . Для скрещивания Мендель выбрал два сорта гороха, отличающихся двумя парами аллелей: окраской горошин и их формой. В первом скрещивании участвовали две чистые линии гороха: с желтыми гладкими горошинами и зелеными морщинистыми. Все первое гибридное поколение, как и ожидалось, было единообразным, то есть состояло из желтого гладкого гороха. При скрещивании этого гороха между собой во втором гибридном поколении произошло следующее.

 

Назад | Следующая страница
В начало реферата


 
     
 

2021 © Copyright, Abcreferats.ru
E-mail:

 

Яндекс.Метрика