Только лучшие рефераты рунета    
 
 

Партнеры:



 
 






ВСТУПЛЕНИЕ

Освоение космоса, космические исследования относятся к од­ному из основных направлений научно-технической революции. Рассмотрение этого направления в технико-экономическом ас­пекте представит определенный интерес для специалистов, раз­рабатывающих международные программы сотрудничества в области экономики, науки и техники.

В этой работе показаны некоторые технико-экономические и научные предпосылки создания ряда космических систем. Рас­сматриваются условия наблюдения природных образований из космоса, обсуждаются методы и средства дистанционного зон­дирования при исследовании природных ресурсов и окружаю­щей среды. Кроме того, приводятся сведения о решении ряда других задач (связь, геодезия и т. д.) с помощью космических систем.

Искусственные спутники Земли, обладая такими особенно­стями, как возможностью находиться в зоне прямой видимости со значительных территорий поверхности Земли, высокой  скоростью перемещения и регулярностью движения, позво­ляют эффективно решать важные народнохозяйственные за­дачи: определение координат (геодезия и навигация), пере­дача информации (телевидение, радиовещание, телефонная и телеграфная связь),  наблюдение за Землей (исследование природных ресурсов и окружающей среды), изучение и конт­роль процессов в атмосфере.

Большой практический интерес, в частности, представляет вынесение в космос, например на орбиты искусственных спут­ников Земли или на Луну, части производственно-технических комплексов. На Луну могут быть вынесены вредные, горнодо­бывающие, энергоемкие виды производства. В условиях кос­мического полета (невесомость, вакуум) могут производиться крупные кристаллы, композитные материалы, уникальная оп­тика, сверхчистые химические и лекарственные препараты и многое другое. Особое значение в ближайшем будущем будет иметь вынос за пределы Земли вредных, вторично не перерабатываемых отходов производства.

Технические характеристики ракетно-космических систем, а также успехи в создании радиоэлектронной и оптико-механи­ческой аппаратуры позволили приступить уже в наши дни к решению конкретных задач. Среди них особо важное значение имеют задачи, связанные с разно­сторонним и комплексным исследованием природных ресур­сов Земли и окружающей среды. Это объясняется по крайней мере двумя главными обстоятельствами. Первое из них свя­зано со все расширяющейся (причем за последние годы тем­пы растут лавинообразно) хозяйственной деятельностью че­ловека на нашей планете, требующей форсированной разра­ботки природных ресурсов, второе — со все более существен­ным влиянием человека и его производственной деятельности на природную среду. Если в прежние годы вопрос стоял о том, чтобы в минимальной степени влиять на экологическую систему планеты, другими словами, не нарушать равновесия в природе, то теперь мы вынуждены на основании глубокого изучения биосферы изменять эти условия, но таким образом, чтобы сохранить природную среду в состоянии, пригодном для комфортной жизни человека. Решать такие глобальные задачи возможно только с помощью космонавтики.

КОСМИЧЕСКИЕ СИСТЕМЫ СВЯЗИ

Использование космической техники сущест­венно повысило эффективность системы связи, позволило связать между собой   все уголки земного шара, дало возможность широко ис­пользовать самые информативные, короткие волны, на которых работает телевидение. Даль­няя радиосвязь с помощью обычных радио­станций осуществима на сравнительно малоинформативном диапазоне радиоволн длиной от 200 до 10 м. В этом диапазоне, например, мож­но одновременно осуществлять примерно нес­колько тысяч разговоров. Это мало. Более ко­роткие радиоволны — от 10 м до 2 см — суще­ственно более информативны, но прямолиней­ность распространения этих волн  (они не за­держиваются ионосферой) делает невозможным их использование для глобальной радиосвязи с помощью обычных наземных радиопередающих средств. Более того, даже в том диапазо­не, которым пользуются наземные средстве, не удается создать высококачественной связи, так как радиосигналы, многократно отражаясь от ионосферы и Земли, претерпевают заметные изменения в зависимости от состояния атмос­феры. Довольно частой ситуацией является пол­ное нарушение связи на несколько суток при так называемых магнитных бурях, вызванных сол­нечной активностью. Все это ограничивает ка­чество и надежность глобальной радиосвязи.

Новые возможности для повышения каче­ства, оперативности и надежности связи откры­лись с запуском искусственных спутников Зем­ли. Находясь в поле прямой радиовидимости большого числа удаленных друг от друга наземных пунктов, спутник позволяет объединить их сетью косми­ческой связи. В этом случае благодаря прямой видимости спутника с наземных пунктов используются информативные, короткие волны, что обеспечивает надежную и высокоэкономичную передачу большого объема информации на дальние расстояния.

Использование искусственных спутников   Земли в системе связи основывается на ретрансляции отражающей поверхно­стью или аппаратурой спутника сигналов от передающих на­земных станций к приемным. В первом случае ретрансляция называется пассивной, во втором — активной. При пассивной ретрансляции используется большая площадь   отражающей поверхности спутника, которая рассеивает падающую на него часть энергии радиоволн, а наземная приемная радиостанция принимает часть рассеянной спутником энергии. Пассивные спутники передают сигналы без  задержки (в реальном масштабе времени), т. е. обеспечивают мгновенную ретрансля­цию.

Такие спутники отличаются простотой и малой стоимостью. Это могут быть надувные тонкостенные оболочки, не содержащие сложной специальной аппаратуры. Они надежны в работе и могут служить весьма продолжительное время. Управлять их работой предельно просто. Еще одним их преимуществом яв­ляется возможность одновременной и независимой ретранс­ляции через один спутник практически неограниченного числа сигналов совершенно различных систем связи, соединяющих разные пункты (при условии, что системы работают на разных частотах).

По схеме пассивной ретрансляции работали американские спутники серии «Эхо». Тонкостенная оболочка из металлизиро­ванных синтетических пленок имела сферическую форму диа­метром 30 м у «Эхо—1» и 40 м — у «Эхо—2». Эксперименталь­ная эксплуатация этих спутников показала, что связь на их ос­нове недостаточно эффективна. Это объясняется прежде всего слишком большим затуханием сигнала. В связи с этим требу­ются большие мощности (около 10 МВт) передающих станций и очень высокие чувствительности приемных    наземных ус­тройств. Это определяет сложность и высокую стоимость на­земных станций и, следовательно, всей системы космической связи в целом, несмотря на относительно небольшую стоимость самих спутников. Кроме того, слабость отраженных к Земле сигналов обусловливает большие шумы и помехи, а следова­тельно, низкое качество связи. Все это заставило отказаться от создания в настоящее время эксплуатационных систем связи на основе использования пассивных космических ретрансля­торов.

Намного более перспективным оказался принцип построе­ния космических систем связи на основе активной ретрансля­ции сигналов. В этом случае аппаратура спутника принимает радиосигналы с Земли, усиливает и затем вновь передает (ре­транслирует) их на Землю. Наличие на спутнике специальной приемопередающей аппаратуры позволяет существенно сни­зить мощность передающей и чувствительность    приемной станции, работающих на Земле. Вызванное этим снижение стои­мости наземных станций столь велико, что вполне окупаются затраты на создание достаточно сложного спутника, его запуск и последующую эксплуатацию. Такая система космической свя­зи рентабельнее системы на основе пассивных ретрансляторов и более рентабельна, чем обычные наземные системы связи. Оценки показывают, что, например, в ряде случаев подобная космическая система связи становится экономически   более эффективной по сравнению с обычной наземной уже при даль­ности связи более 200 км. Высокий уровень мощности приходя­щего к Земле сигнала при его активной ретрансляции спутни­ком обусловливает высокое качество связи. Эти факторы оп­ределили использование для космической системы связи прин­ципа активной ретрансляции сигналов.

Большими достоинствами обладает космическая система свя­зи со спутниками на так называемой стационарной орбите, представляющей собой круговую экваториальную орбиту высо­той около 30 тыс. км. Такая орбита характерна тем, что спут­ник на ней находится в неподвижном относительно поверхнос­ти Земли положении (в связи с равенством их угловых ско­ростей вращения). Со стационарной   орбиты обеспечивается большая зона охвата поверхности. Один стационарный спутник может обеспечить круглосуточную связь между пунктами, уда­ленными друг от друга на расстояние около 17 тыс. км, причем для уменьшения потерь сигналов принимается, что спутник а крайних точках виден под углом 7,5°.

Весь диапазон частот, ретранслируемых спутником связи, де­лится на поддиапазоны, называемые стволами, причем каждый ствол занимает полосу частот, необходимую для передачи од­ной телевизионной программы. Однако через него может пе­редаваться не только телевизионная информация, но и, если необходимо, телефонная, телеграфная, фототелеграфная, ра­диовещательная. Так, например, через один ствол можно пе­редавать одновременно до 600 телефонных разговоров. Чем большее количество стволов имеет связной спутник, тем более информативную связь он может обеспечить, том более «про­изводительной» будет космическая система связи.

Всеобщий охват населения обширной территории телевиде­нием с помощью наземных средств хотя в принципе и возмо­жен, но сопряжен с большими материальными затратами, не­обходимыми для постройки уникальных телевизионных башен и линий радиорелейной связи. При этом при использовании ка­бельных линий приходится усиливать сигналы связи через каж­дые 6—10 км, а для связи по радиорелейным линиям необхо­димо через каждые 40—60 км устанавливать сложные ретранс­ляционные станции. Для их создания потребуются дефицитные строительные материалы и большая армия строителей, которые могли бы быть использованы на других работах. Время, необходи­мое для ввода в действие таких уникальных наземных сооруже­ний, будет исчисляться десятилетиями. Кроме того, многоэлементность такой системы делает ее малонадежной, неоператив­ной и низкокачественной. Что же касается организации межкон­тинентальных передач, то наземными средствами реализо­вать их через океан практически не представляется возмож­ным. Такая задача под силу только спутниковым системам связи.

В 1973 г. в СССР начал эксплуатироваться новый спутник свя­зи «Молния-2» с диапазоном частот 4—6 ГГц. Он предназна­чен для организации многоканальной телефонно-телеграфной связи, передачи программ черно-белого или цветного телеви­дения на сеть системы «Орбита», а также для   обеспечения международного сотрудничества в области космической связи. В последующие годы совершенствовались как спутники, так и приемные станции. В Советском Союзе были запущены спут­ники «Молния-3», «Радуга» и «Экран», которые должны вой­ти в постоянную эксплуатацию в 1975—1980 гг., причем спутник «Экран», располагаясь на стационарной орбите, позволяет при­нимать сигналы на недорогие малогабаритные наземные ан­тенны коллективного пользования.

Системы космической связи обеспечивают решение нацио­нальных задач по удовлетворению внутренних потребностей каждой страны и одновременно расширяют возможности меж­дународного обмена информацией.

Сегодня космические системы связи прочно вошли в жизнь. Десятки стран широко используют возможности систем косми­ческой связи и телевидения, которые создали предпосылки для обобщения и распространения информации в глобальном мас­штабе.

МЕТЕОРОЛОГИЧЕСКИЕ СИСТЕМЫ

Множество причин затрудняет точное пред­сказание погоды. В конечном счете практиче­ски все явления в атмосфере связаны с превра­щениями получаемой Землей солнечной энер­гии, но эти превращения столь многообразны и сложны, что их изучение, учет, а тем более прогнозирование представляют большие труд­ности. Связано это с неоднородностью атмосфе­ры, ее подвижностью, разнообразностью рель­ефа и физических свойств поверхности Земли, ее вращением, излучением тепла от Земли и ат­мосферы в космос. К границе земной атмосфе­ры на каждый ее квадратный метр приходит от Солнца в течение минуты 20 ккал энергии. Око­ло 35% ее отражается обратно в космос, 15% поглощается атмосферой и 50% — поверхно­стью Земли.

Разнообразен характер солнечного излучения. Оно проявляется в виде радиоизлучения, ин­фракрасного, светового,   ультрафиолетового, рентгеновского излучений, а также в виде по­тока заряженных частиц — электронов, прото­нов. Каждое из перечисленных излучений Сол­нца оказывает различное влияние на разные слои атмосферы. При этом к поверхности Земли приходит в основном видимая часть излучений Солнца.

Нагреваясь, Земля отдает тепло атмосфере. Теплоотдача происходит как при контакте воз­духа с поверхностью суши и воды, так и путем теплового излучения Земли. Атмосфера очень хорошо поглощает излучаемое Землей тепло. Большая подвижность атмосферы ведет к быс­трым перемещениям теплых масс воздуха вверх, а холодных вниз. Этой же причиной вызываются весьма значи­тельные перемещения холодных масс из охлажденных районов Земли и теплых из районов с высокой температурой. Вращение Земли заставляет возникающие в северном полушарии потоки воздуха отклоняться вправо, а в южном—влево от тех на­правлений, которые они имели бы в случае неподвижности зем­ного шара. Это приводит к развитию гигантских вихревых ат­мосферных образований—циклонов и антициклонов.

Вследствие трения между земной поверхностью и переме­щающейся воздушной массой и между отдельными слоями воз­духа отклоняющее воздействие вращения Земли на различных высотах сказывается по-разному. Оно возрастает с увеличени­ем высоты. Например, непосредственно над поверхностью су­ши направление ветра изменяется до 45—55°, а на уровне 50 м — до 90°. В результате совместного действия всех факторов получается очень сложная картина распределения воздушных течений в атмосфере.

Таким образом, для изучения погодообразующих процессов и прогнозирования погоды необходимо всестороннее изучение самых разнообразных явлений в атмосфере Земли и на ее по­верхности,  а также в космосе  (в околоземном и дальнем, включая Солнце).

Дело в том,   что   под   действием   коротковолновой радиации «спокойного»   Солнца образуется   земная ио­носфера. Это излучение также оказывает непосредственное влияние на молекулярный состав и плотность верхних слоев атмосферы, что в свою очередь определяет тепловой баланс нижних ее слоев. Не менее важно влияние различных активных процессов в солнечной короне, наиболее известными из кото­рых являются солнечные вспышки.

Проблемы солнечно-земных связей еще во многом ждут своего решения. Но уже сегодня ясно, что многие «спусковые механизмы» погодных явлений, происходящих на Земле, ини­циированы космическими причинами. Разнообразные спутники и межпланетные станции приступили к систематическому изу­чению проблем солнечно-земной физики.

Дальнейшее развитие техники и экономики предъявляет новые требования к метеорологии. Еще недавно прогнозы пого­ды составляли для обеспечения хозяйственной деятельности относительно небольших районов. Теперь же с созданием регу­лярных авиалиний в самые отдаленные пункты нашей планеты, с организацией межконтинентальных перелетов в Антарктиду, с развитием морского транспорта и распространением рыбо­ловства на весь Мировой океан наиболее необходима полная информация о гидрометеорологической обстановке и ее пред­стоящих изменениях в масштабе всей Земли.

Уверенное прогнозирование погоды на длительный срок тре­бует создания теории общей циркуляции атмосферы, что не­возможно без систематических метеорологических наблюдений на всей поверхности планеты. Однако существующие в настоя­щее время около 10 тыс. метеостанций на Земле не позволя­ют решить эту задачу. Они не могут дать информацию с ог­ромных просторов океанов, их мало в труднодоступных рай­онах суши, на ледяных просторах Арктики и Антарктики. Поч­ти 80% планеты остается «белым пятном» для метеорологии. Неконтролируемая часть атмосферы не только велика по раз­мерам, но и расположена над районами, играющими важней­шую роль в формировании погодных явлений.

По-настоящему широко удалось взглянуть на атмосферу только с помощью космических аппаратов: только метеороло­гический спутник, вооруженный специальной аппаратурой, не­прерывно перемещаясь над Землей, может дать информацию о погоде на всей планете.

Измеряя с помощью бортовой аппаратуры спутника пара­метры излучения тепла различных слоев атмосферы, можно получить богатый материал для изучения происходящих в ней процессов. Кроме того, спутник может служить хорошим сред­ством для сбора информации с наземных метеорологических пунктов, разбросанных по всему земному шару. За время од­ного оборота вокруг Земли спутник собирает данные, которые в 100 раз превышают информацию, поступающую со всех метео­рологических станций, и, кроме того, дает сведения о погоде на той части поверхности земного шара, которая является «бе­лым пятном» для метеорологов.

Таким образом, космическая техника станет одним из самых эффективных средств в метеорологии, имеющих огромное эко­номическое значение. Уже первые метеорологические спутни­ки дали много ценной для хозяйственной практики информации. Так, например, «Космос-144», входивший в экспериментальную метеорологическую систему «Метеор», обнаружил, что от о. Врангеля до Берингова пролива океан очистился от льда. Это позволило начать навигацию по Северному морскому пути на месяц раньше намеченного срока.

Обнаружение тайфунов и ураганов с помощью спутников стало обычным явлением. Так были обнаружены ураганы «Бэтси», «Эстер», тайфуны «Ненси», «Памела», которые наносят ог­ромные убытки хозяйству. Например, ураган «Агнес», обрушив­шийся на восточную часть США 20—23 июня 1972 г., унес 118 жизней, а причиненный им материальный ущерб оценивается в три с лишним миллиарда долларов. Объем осадков, выпав­ших на сушу во время урагана, составил около 100 куб. км.

Уже сегодня эксплуатация метеорологических космических систем вносит серьезный вклад в экономику, а в ближайшие годы он возрастает во много раз. Так, например, если метео­рологические спутники позволят составлять надежный прогноз погоды на пять суток вперед, то (по оценкам совета экономи­ческих экспертов при президенте США) ежегодно будет обес­печен следующий экономический эффект: в сельском хозяйстве—2500 млн. долл., в наземном транспорте—100 млн.; в лесной промышленности—45 млн.; в водном хозяйстве—3000 млн. долл. Таким образом, суммарный эффект в хозяйственных отраслях Соединенных Штатов от такой системы составит около 6 млрд. долл. Для всего мира эта цифра возрастет во много раз.

По мнению зарубежных ученых, прогнозы погоды с досто­верностью 90—95% для всего земного шара на трое суток вперед с помощью космической метеорологической системы обеспечат ежегодную экономию около 60 млрд. долл.

Для составления прогнозов Гидрометеослужбы СССР широко используются спутники «Метеор», на основе которых в 1967 г. была создана метеорологическая космическая  система. Она, по далеко не полным данным, позволяет сохранить ежегодно материальные ценности на сумму около 700 млн. руб.

Метеорологическая система «Метеор» состоит из метеоро­логических спутников, находящихся на орбитах, наземного комплекса приема, обработки и распространения информации, а также службы контроля состояния бортовых систем спутни­ков и управления ими.

Метеорологический спутник состоит из двух герметичных от­секов: приборного, находящегося в его нижней части и содер­жащего научную аппаратуру, и энергоаппаратурного, в котором размещаются основные служебные системы. С этим отсеком конструктивно связан механизм электропривода панелей сол­нечных батарей. Продольная ось спутника постоянно направ­лена к центру Земли. Спутник ориентирован также по двум дру­гим осям, направленным вдоль траектории и перпендикулярно к плоскости орбиты. Стабилизируется он с помощью электро-маховичной системы. Солнечные батареи с помощью специаль­ной системы ориентации и стабилизации постоянно располага­ются плоскостями панелей перпендикулярно солнечным лучам. Направление оси спутника контролируется датчиками теплового излучения Земли, а для ориентации солнечных батарей используются специальные фотоэлементы. Система терморегулирова­ния обеспечивает требуемый режим работы внутри спутника.

Метеорологическая аппаратура спутника состоит в основном из телевизионной (ТВ), инфракрасной (ИК) и актинометрической (АК) систем. Она может работать циклами различной продол­жительности и включается по заданной программе или по ко­мандам с Земли. ТВ и ИК снимки позволяют выявить осо­бенности структуры полей облачности, не доступные наблюде­ниям с наземной сети станций, и сделать выводы не только о положении, но и об эволюции соответствующих синоптических объектов и воздушных масс. Совместная ТВ и ИК информация позволяет сделать более надежную  оценку  синоптической обстановки и характера развития атмосферных процессов.

АК аппаратура предназначена для измерения радиации, ухо­дящей от Земли. В ее составе имеются два сканирующих узко-секторных прибора, один — для диапазона 0,3—3 мкм, а дру­гой для диапазона 3—30 и 8—12 мкм. Это позволяет исследо­вать отражательные и излучательные свойства облаков и от­крытых участков земной поверхности, а также радиационный баланс системы Земля—атмосфера.

За один оборот вокруг Земли спутник «Метеор» получает ТВ и ИК информацию с территории около 8% и о радиацион­ных потоках—с 20% площади земного шара. Система из двух спутников, находящихся на круговых околополярных орбитах высотой около 630 км, плоскости которых пересекаются под углом 95°, дает в течение суток информацию с половины по­верхности Земли. При этом каждый из районов планеты наб­людается с интервалом 6 ч.

В СССР создана также наземная система сбора, обработки и распространения метеоинформации, построенная на использо­вании электронно-вычислительных машин. Получаемая инфор­мация оформляется в виде снимков, на которые наносится сетка географических координат, свободных от перспективных искажений, приведенных к одному масштабу и удобных для сравнения с синоптическими картами. Результаты обработки данных АК аппаратуры представляются в виде цифровых карт с автоматически нанесенной на них сеткой координат и изоли­ниями. Полученная информация используется для междуна­родного обмена. Уже в течение ряда лет ученые социалистиче­ских стран ведут в рамках программы «Интеркосмос» исследо­вания облачности, радиационного и теплового баланса системы Земля — атмосфера по спутниковым данным. В результате этой работы специалисты Болгарии, Венгрии, ГДР, Румынии и Совет­ского Союза создали совместную книгу «Использование данных о мезомасштабных особенностях облачности в анализе погоды». Это издание имеет практическое значение для оперативной ра­боты синоптиков-прогнозистов. Большой практический интерес представляет также совместная работа ученых этих стран над усовершенствованием методов получения полей метеорологи­ческих элементов на основе спутниковой информации. В ряде социалистических стран создаются бортовые приборы, устанав­ливаемые на советских метеорологических спутниках, а также наземная аппаратура для приема информации со спутников в режиме непосредственной передачи.

Большие возможности для оперативного наблюдения погод­ных явлений имеют пилотируемые космические корабли и стан­ции, так как космонавт может немедленно дать сведения о тех или иных погодных явлениях, не дожидаясь специальной обра­ботки метеоинформации в наземном центре. В процессе поле­та космических кораблей «Союз» и орбитальных станций «Са­лют» был получен ряд ценных сведений, используемых в рабо­те Гидрометцентра СССР.

Метеорологические системы как в СССР, так и в других стра­нах непрерывно совершенствуются. Можно предполагать, что в будущем в метеорологическую систему войдут космические аппараты, расположенные на трех ярусах. Первый ярус состав­ляет долговременные обитаемые орбитальные станции. Они обеспечат визуальные наблюдения геосферы и быстропротекающих метеорологических явлений, а также, приливов, обвалов, пыльных и песчаных бурь, цунами, ураганов, землетрясений. Второй ярус — это автоматические спутники типа «Метеор» на полярных и приполярных орбитах высотой 1—1,5 тыс. км. Ос­новное их назначение — поставлять информацию, необходимую для численных методов прогнозирования погоды в глобальном и локальном масштабах, обеспечить наблюдение средне- и мел­комасштабных процессов в атмосфере. Наконец, третий ярус — метеорологические спутники на орбитах высотой до 36 тыс. км для непрерывного наблюдения динамических процессов в атмосфере Земли. Они дадут картину общей циркуляции атмос­феры. Кроме того, такая трехъярусная метеосистема будет по­лучать дополнительную информацию о «погоде» в космосе от космической службы Солнца и космоса. Суммируя всю эту ин­формацию, ученые смогут точнее предсказывать ход событий в атмосфере, познать закономерности погодообразования, что позволит вплотную подойти к управлению погодой на нашей планете и создаст предпосылки для преобразования природы на Земле в нужном для человечества направлении.

ИСПОЛЬЗОВАНИЕ СПУТНИКОВ В ГЕОДЕЗИИ И НАВИГАЦИИ

Искусственные спутники  открыли новую эру в науке об измерении Земли — эру космической геодезии. Они внесли в геодезию новое качество — глобальность; благодаря большим размерам зоны видимости поверхности Земли со спутни­ка значительно упростилось создание геодези­ческой основы для больших территорий, так как существенно сократилось необходимое количество промежуточных этапов измерений. Так, если в классической геодезии среднее расстоя­ние между определяемыми пунктами составля­ет 10—30 км, то в космической геодезии эти расстояния могут быть на два порядка больше (1—3 тыс. км). Тем самым упрощается передача геодезических данных через водные простран­ства. Между материком и островами, рифами, архипелагами геодезическая связь может быть установлена при прямой их видимости со спут­ника непосредственно через него, без каких-ли­бо промежуточных этапов, что способствует бо­лее высокой точности построения геодезиче­ской сети.

Основным методом космической геодезии яв­ляется одновременное наблюдение спутника с наземных пунктов. При этом измеряются самые разнообразные параметры относительно поло­жения пунктов и спутников. Параметрами могут служить дальность, скорость изменения даль­ности (или радиальная скорость), угловая ориен­тация линии визирования пункт—спутник в ка­кой-либо системе координат, скорость измене­ния углов и т. д. Измерительные средства распола­гаются на наземных пунктах. На спутнике же раз­мещается аппаратура, обеспечивающая работу этих измерительных средств. Спутник — это вспомогатель­ный маяк для проведения измерений относительно по­ложения опорных пунктов, причем этот маяк может быть как пассивным, так и активным. В первом случае спутник, освещен­ный солнцем или имеющий специальную лампу-вспышку, фото­графируется с наземных пунктов на фоне звездного неба.

Одновременность наблюдений спутника с нескольких пунктов обеспечивается специальным синхронизирующим устройством, которое по сигналам единого времени производит одновремен­ное открывание и закрывание затворов фотокамер. Наличие на фотографии изображений звезд (в виде точек) и следа спутни­ка в виде пунктирной линии позволяет путем графических изме­рений определить взаимное положение штрихов пунктирной линии, соответствующих положениям спутника, и ближайших к ним точек, соответствующих звездам. Это дает возможность, зная положение звезд по звездному каталогу, определить ко­ординаты штрихов спутника или, точнее, угловую ориентацию линий визирования наблюдательный пункт—спутник. Совокуп­ность угловых координат линии визирования пункт—спутник позволяет определить взаимную угловую ориентацию геодези­ческих пунктов. Ориентация всей сети на поверхности Земли требует знания координат хотя бы одного пункта, определяе­мых классическими методами, и дальности до другого или ко­ординат двух пунктов, называемых базисными. - Для преодоления неблагоприятных метеорологических усло­вий при оптических наблюдениях спутника используются радио­технические средства. В этом случае спутник является как бы активным маяком. Применяются различные принципы измере­ний: эффект Доплера, смещение фаз радиосигналов спутника, принимаемых в различных точках пункта, время распростра­нения сигнала пункт—спутник—пункт и т. д.

Большие перспективы в измерительной технике космической геодезии имеют оптические квантовые генераторы (лазеры). Они позволяют измерять дальность и радиальную скорость со значительно более высокой точностью, чем с помощью радио­технических средств. Таким образом, космическая геодезия позволит уточнить форму Земли — геоид, точно определить ко­ординаты любых пунктов на поверхности нашей планеты, соз­дать топографические карты на любые районы земной поверх­ности и определить параметры поля тяготения Земли.

Все это даст возможность морскому флоту определять очер­тания материков и получать точные координаты островов, ри­фов, маяков и других морских объектов, авиации — определять координаты аэропортов, наземных ориентиров и станций наведения. Эти данные позволят выбирать наилучшие маршруты движения и обеспечат   надежность и безопасность работы морского и воздушного транспорта.

Как известно, для прокладки курса корабля или самолета в каждый момент времени необходимо точно знать их место­положение. Для этих целей служат различные навигационные системы, которые обеспечивают вождение по заданным мар­шрутам. С давних времен в навигации использовались есте­ственные ориентиры или поля: небесные светила, магнитное поле Земли и др. В последнее время большое распростране­ние получили радионавигационные системы, среди которых наиболее современными являются системы, использующие ис­кусственные спутники Земли.

Спутники обеспечивают навигационной системе глобальность. Всепогодность навигации в этом случае достигается благодаря использованию радиосредств сверхвысокочастотного диапазона.

Навигация с использованием спутников основана на измере­нии параметров относительного положения и движения навигируемого объекта и спутника. Такими параметрами могут слу­жить: расстояние (дальность), скорость изменения этого расстоя­ния (радиальная скорость), угловая ориентация линии объект-спутник (линии визирования) в какой-либо системе координат, скорость изменения этих углов и др.

Следующая страница



 
     
 

2021 © Copyright, Abcreferats.ru
E-mail:

 

Яндекс.Метрика